Общий вид дифференциального уравнения. Дифференциальные уравнения

Инструкция

Если уравнение представлено в виде: dy/dx = q(x)/n(y), относите их к категории дифференциальных уравнений с разделяющимися переменными. Их можно решить, записав условие в дифференциалах по следующей : n(y)dy = q(x)dx. Затем проинтегрируйте обе части. В некоторых случаях решение записывается в виде интегралов, взятых от известных функций. К примеру, в случае dy/dx = x/y, получится q(x) = x, n(y) = y. Запишите его в виде ydy = xdx и проинтегрируйте. Должно получиться y^2 = x^2 + c.

К линейным уравнениям относите уравнения «первой ». Неизвестная функция с ее производными входит в подобное уравнение лишь в первой степени. Линейное имеет вид dy/dx + f(x) = j(x), где f(x) и g(x) – функции, зависящие от x. Решение записывается с помощью интегралов, взятых от известных функций.

Учтите, что многие дифференциальные уравнения - это уравнения второго порядка (содержащие вторые производные) Таким, например, является уравнение простого гармонического движения, записанное в виде общей : md 2x/dt 2 = –kx. Такие уравнения имеют, в , частные решения. Уравнение простого гармонического движения является примером достаточно важного класса: линейных дифференциальных уравнений, у которых имеется постоянный коэффициент.

Рассмотрите более общий пример (второго порядка): уравнение, где у и z – являются заданными постоянными, f(x) – заданная функция. Подобные уравнения можно решить разными способами, к примеру, при помощи интегрального преобразования. Это же самое можно сказать и про линейные уравнения более высоких порядков, имеющих постоянные коэффициенты.

Примите к сведению, что уравнения, которые содержат неизвестные функции, а также их производные, стоящие в степени выше первой, называются нелинейными. Решения нелинейных уравнений достаточно сложны и поэтому, для каждого из них используется свой частный случай.

Источники:

  • типы дифференциальных уравнений

Изучение курса дифференциального исчисления всегда начинается с составления дифференциальных уравнений. Прежде всего рассматривают несколько физических задач, при математическом решении которых неизбежно возникают производные различных порядков. Уравнения, которые содержат аргумент, искомую функцию и ее производные называют дифференциальными.

Вам понадобится

  • - ручка;
  • - бумага.

Инструкция

В исходных физических задачах аргументом, чаще всего, является t. Общий принцип составления дифференциального уравнения (ДУ) состоит в том, что на малых приращениях аргумента функции почти не меняются, что позволяет заменять приращения функции их дифференциалами. Если в постановке задачи речь зайдет о изменения какого-либо параметра, то сразу следует производную параметра (со знаком минус, если некоторый параметр уменьшается).

Если в процессе рассуждений и выкладок возникли интегралы, их можно устранить дифференцированием. И наконец, в физических формулах производных и так более чем достаточно. Самое главное – рассмотреть как можно примеров, которые в процессе необходимо довести до стадии составления ДУ.

Решение. Пусть входное напряжение U(t), а искомое выходное u(t) (см. рис.1).
Входное напряжение состоит из суммы выходного u(t) и падения напряжения на сопротивления R - Ur(t).
U(t)=Ur(t)+Uc(t); по закону Ома Ur(t)=i(t)R, i(t)=C(dUc/dt). С другой стороны Uc(t)=u(t), а i(t) – ток цепи (в том числе и на емкости С). Значит i=C(du/dt), Ur=RC(du/dt). Тогда баланс напряжений в электрической цепи можно переписать в виде: U=RC(du/dt)+u. Разрешая это уравнение относительно первой производной, имеем:
u’(t)=-(1/RC)u(t)+(1/RC)U(t).
Это ДУ первого порядка. Решением задачи будет его общее решение (неоднозначное). Для получения однозначного решения надо задавать начальные условия (краевые) в виде u(0)=u0.

Пример 2. Найти уравнение гармонического осциллятора.

Решение. Гармонический осциллятор (колебательный контур) – основной элемент радиопередающих и радиоприемных устройств. Это замкнутая электрическая цепь, содержащая параллельно соединенные емкость С (конденсатор) и индуктивность L (катушка). Известно, что токи и напряжения на таких реактивных элементах связаны равенствами Iс=C(dUc/dt)=CU’c,
Ul=-L(dIl/dt)=-LI’l . Т.к. в этой задаче все напряжения и все токи одинаковы, то окончательно
I’’+(1/LC)I=0.
Получено ДУ второго порядка.

Видео по теме

Определить вид дифференциального уравнения необходимо для того, чтобы подобрать соответствующий каждому случаю способ решения. Классификация видов довольно большая, а решение основывается на методах интегрирования.

Инструкция

Необходимость в дифференциальных уравнениях возникает тогда, когда известны , а сама она остается неизвестной величиной. Часто такая ситуация возникает при исследовании физических . Свойства функции описываются ее производными или дифференциалом, поэтому единственным способом ее нахождения является интегрирование. Прежде чем приступать к решению, нужно определить вид дифференциального уравнения.

Существует несколько дифференциальных уравнений, простейшим из них является выражение у’ = f(х), где у’ = dу/dх. Кроме того, к этому виду может быть приведено равенство f(х) у’ = g(х), т.е. у’ = g(х)/f(х). Разумеется, это возможно только при условии, что f(х) не обращается в ноль. Пример: 3^х у’ = х² – 1 → у’ = (х² - 1)/3^х.

Дифференциальные уравнения с разделенными переменными называются так потому, что производная у’ в данном случае буквально разделена на две составляющие dу и dх, которые находятся по разные стороны от знака равно. Это уравнения вида f(у) dу = g(х) dх. Пример: (у² – sin у) dу = tg х/(х - 1) dх.

Часто одно лишь упоминание дифференциальных уравнений вызывает у студентов неприятное чувство. Почему так происходит? Чаще всего потому, что при изучении основ материала возникает пробел в знаниях, из-за которого дальнейшее изучение дифуров становиться просто пыткой. Ничего не понятно, что делать, как решать, с чего начать?

Однако мы постараемся вам показать, что дифуры – это не так сложно, как кажется.

Основные понятия теории дифференциальных уравнений

Со школы нам известны простейшие уравнения, в которых нужно найти неизвестную x. По сути дифференциальные уравнения лишь чуточку отличаются от них – вместо переменной х в них нужно найти функцию y(х) , которая обратит уравнение в тождество.

Дифференциальные уравнения имеют огромное прикладное значение. Это не абстрактная математика, которая не имеет отношения к окружающему нас миру. С помощью дифференциальных уравнений описываются многие реальные природные процессы. Например, колебания струны, движение гармонического осциллятора, посредством дифференциальных уравнений в задачах механики находят скорость и ускорение тела. Также ДУ находят широкое применение в биологии, химии, экономике и многих других науках.

Дифференциальное уравнение (ДУ ) – это уравнение, содержащее производные функции y(х), саму функцию, независимые переменные и иные параметры в различных комбинациях.

Существует множество видов дифференциальных уравнений: обыкновенные дифференциальные уравнения, линейные и нелинейные, однородные и неоднородные, дифференциальные уравнения первого и высших порядков, дифуры в частных производных и так далее.

Решением дифференциального уравнения является функция, которая обращает его в тождество. Существуют общие и частные решения ДУ.

Общим решением ДУ является общее множество решений, обращающих уравнение в тождество. Частным решением дифференциального уравнения называется решение, удовлетворяющее дополнительным условиям, заданным изначально.

Порядок дифференциального уравнения определяется наивысшим порядком производных, входящих в него.


Обыкновенные дифференциальные уравнения

Обыкновенные дифференциальные уравнения – это уравнения, содержащие одну независимую переменную.

Рассмотрим простейшее обыкновенное дифференциальное уравнение первого порядка. Оно имеет вид:

Решить такое уравнение можно, просто проинтегрировав его правую часть.

Примеры таких уравнений:

Уравнения с разделяющимися переменными

В общем виде этот тип уравнений выглядит так:

Приведем пример:

Решая такое уравнение, нужно разделить переменные, приведя его к виду:

После этого останется проинтегрировать обе части и получить решение.


Линейные дифференциальные уравнения первого порядка

Такие уравнения имеют вид:

Здесь p(x) и q(x) – некоторые функции независимой переменной, а y=y(x) – искомая функция. Приведем пример такого уравнения:

Решая такое уравнение, чаще всего используют метод вариации произвольной постоянной либо представляют искомую функцию в виде произведения двух других функций y(x)=u(x)v(x).

Для решения таких уравнений необходима определенная подготовка и взять их “с наскока” будет довольно сложно.

Пример решения ДУ с разделяющимися переменными

Вот мы и рассмотрели простейшие типы ДУ. Теперь разберем решение одного из них. Пусть это будет уравнение с разделяющимися переменными.

Сначала перепишем производную в более привычном виде:

Затем разделим переменные, то есть в одной части уравнения соберем все "игреки", а в другой – "иксы":

Теперь осталось проинтегрировать обе части:

Интегрируем и получаем общее решение данного уравнения:

Конечно, решение дифференциальных уравнений – своего рода искусство. Нужно уметь понимать, к какому типу относится уравнение, а также научиться видеть, какие преобразования нужно с ним совершить, чтобы привести к тому или иному виду, не говоря уже просто об умении дифференцировать и интегрировать. И чтобы преуспеть в решении ДУ, нужна практика (как и во всем). А если у Вас в данный момент нет времени разбираться с тем, как решаются дифференциальные уравнения или задача Коши встала как кость в горле или вы не знаете, как правильно оформить презентацию , обратитесь к нашим авторам. В сжатые сроки мы предоставим Вам готовое и подробное решение, разобраться в подробностях которого Вы сможете в любое удобное для Вас время. А пока предлагаем посмотреть видео на тему "Как решать дифференциальные уравнения":

Тогда настало самое время, чтобы перейти к более сложной теме, а именно, решению дифференциальных уравнений (ДУ, в простонародье диффуров). Но не все так страшно, как кажется на первый взгляд.

Дифференциальное уравнение: что это такое?

Дифференциальное уравнение (ДУ) – это уравнение, которое вместе с самой функцией (и ее аргументами), содержит еще и ее производную или несколько производных.

Дифференциальное уравнение: что нужно знать еще?

Первое (и главное), что понадобится, это умение правильно определять тип дифференциального уравнения. Второе, но не менее важное, это умение хорошо интегрировать и дифференцировать.

Не секрет, что дифференциальные уравнения бывают разных типов. Но… для начала отметим, что ДУ бывают разных порядков. Порядок ДУ — это порядок высшей производной, входящей в дифференциальное уравнение. Классификацию ДУ согласно порядку уравнения можно посмотреть в следующей таблице:

Порядок уравнения Вид уравнения Пример
I
II
n

Наиболее часто приходится иметь дело с ДУ первого и второго порядка, реже третьего. В 99% случаев в задачах встречаются три типа ДУ первого порядка: уравнения с разделяющимися переменными, однородные уравнения и линейные неоднородные уравнения. Иногда еще встречаются более редкие типы ДУ: уравнения в полных дифференциалах, уравнения Бернулли и др. Среди ДУ второго порядка часто встречаются уравнения, приводящиеся к ДУ первого порядка, линейные однородные и неоднородные уравнения с постоянными коэффициентами.

Дифференциальное уравнение: решение – что это значит и как его найти?

При решении ДУ нам предлагается найти либо общее решение (общий интеграл), либо частное решение. Общее решение y = f(x, C) зависит от некоторой постоянной (С — const), а частное решение не зависит: y = f(x, C 0) .

Найти функцию f по некоторой заданной зависимости, в которую входят сама функция с аргументами и ее производные. Подобный тип задач актуален в физики, химии, экономики, технике и других областях науки. Подобные зависимости носят название дифференциальных уравнений. К примеру, y" - 2xy = 2 - это дифференциальное уравнение 1-го порядка. Посмотрим, как подобные типы уравнений решаются.

Что это?

Уравнение, выглядящее следующим образом:

  • f(y, y", ..., y(10), y(11), ..., y(k), x) = 0,

носит название обыкновенного дифура и характеризуется как уравнение порядка k, и зависит оно от x и производных y", y"", ... - вплоть до k-й.

Разновидности

В случае, когда функция, которую нужно найти, в дифференциальном уравнении зависима только от одного аргумента, тип дифференциального уравнения именуется обыкновенным. Иными словами, в уравнении функция f и все ее производные зависят только от аргумента x.

При зависимости же искомой функции от нескольких разных аргументов уравнения носят название дифференциальных в частных производных. В общем случае они выглядят:

  • f(x, fx", ..., y, fy"..., z, ..., fz"", ...),

где под выражением fx" понимается производная функции по аргументу x, а fz"" - двойная производная функции по аргументу z, и т. д.

Решение

Несложно догадаться, что именно считается решением диф. уравнения. Это функция, подстановка которой в уравнение дает тождественный результат по обе стороны знака равно, называется решением. Например, уравнение t""+a2t = 0 имеет решение в виде t = 3Cos(ax) - Sin(ax):

1 t"= -3aSin(ax) - aCos(ax) 2 t""= -3a2Cos(ax) + a2Sin(ax) 3 t""+a2t= (-3a2Cos(ax) + a2Sin(ax)) + a2(3Cos(ax) - Sin(ax))

Проведя упрощение уравнения 3 мы выясним, что t""+a2t = 0 при всех значения аргумента x. Однако стоит сразу оговориться. Уравнение t = 3Cos(ax) - Sin(ax) является не единственным решением, а лишь одним из бесконечного множества, которое описывается формулой mCos(ax) + nSin(ax), где m и n - это произвольные числа.

Причина такого соотношения заключается в определение первообразной функции в интегральном исчислении: если Q - первообразная (точнее одна из многих) для функции q , то ∫q(x) dx = Q(x) + C, где С - произвольная константа, которая обнуляется при обратной операции - взятии производной функции Q"(x).


Опустим определение того, что такое решение уравнения k-го порядка. Не трудно представить, чем больше порядок производной, тем больше констант возникает в процессе интегрирования. Также следует уточнить, что описанное выше определение для решения не является полным. Но для математиков XVII века оно было достаточным.

Ниже будут рассмотрены лишь основные типы дифференциальных уравнений первого порядка. Самые базовые и простые. Помимо них существуют и другие диф. уравнения: однородные, в полных дифференциалах и Бернулли. Но решение всех часто связано с методом разделяющихся переменных, который будет рассмотрен ниже.

Разделение переменных как способ решения

F = 0 - представляет собой диф. уравнение порядка 1. При решении данного типа дифференциальных уравнений они легко приводятся к виду y" = f. Так, например, уравнение ey" - 1 - xy = 0 приводится к виду y" = ln(1 + xy). Операция приведения дифференциального уравнения к подобному виду называется его разрешением относительно производной y".

После разрешения уравнения нужно привести его к дифференциальному виду. Это делается путем умножения на dx всех частей равенства. Из y" = f получается y"dx = fdx. С учетом того, что y"dx = dy, получим уравнение в виде:

  • dy = f dx - которое называется дифференциальной формой.

Очевидно, y" = f(x) - наиболее простое дифференциальное уравнение первого порядка. Его решение достигается простым интегрированием. Более сложным видом является q(y)*y" = p(x), в котором q(y) - это функция, зависящая от y, а p(x) - функция зависящая от x. Приведя его к дифференциальному виду, получим:

  • q(y)dy = p(x)dx

Легко понять, почему уравнение называется разделенным: его левая часть содержит только переменную y, а правая - только x. Решается такое уравнение с применением следующей теоремы: если у функции p существует первообразная P, а у q - Q, то интеграл дифура будет Q(y) = P(x) + C.


Решим уравнение z"(x)ctg(z) = 1/x. Приведя это уравнение к дифференциальному виду: ctg(z)dz = dx/x; и взяв интеграл от обеих частей ∫ctg(z)dz = ∫dx/x; получим решение в общем виде: C + ln|sin(z)| = ln|x|. Красоты ради данное уравнение по правилам логарифмов может быть записано в иной форме, если положить C = ln W - получим W|sin(z)| = |x| или, еще проще, WSin(z) = x.

Уравнения вида dy/dx = q(y)p(x)

Разделение переменных можно применить на уравнениях вида y" = q(y)p(x). Нужно только учесть случай, когда q(y) при некотором числе а обращается в нуль. То есть q(a) = 0. В таком случае функция y = a будет решением, т. к. для нее y" = 0, следственно, q(a)p(x) также равно нулю. Для всех остальных значений, где q(y) не равно 0, можно записать дифференциальную форму:

  • p(x) dx = dy / q(y),

интегрируя которую, получают общее решение.


Решим уравнение S" = t2(S-a)(S-b). Очевидно, корнями уравнения являются числа a и b. Поэтому S=a и S=b - решения данного уравнения. Для других значений S имеем дифференциальную форму: dS/[(S-a)(S-b)] = t2dt. Откуда легко получить общий интеграл.

Уравнения вида H(y)W(x)y" + M(y)J(x) = 0

Разрешив данный вид уравнение относительно y" получим: y" = - C(x)D(y) / A(x)B(y). Дифференциальная форма данного уравнения будет такова:

  • W(x)H(y)dy + J(x)M(y)dx = 0

Для решения данного уравнения нужно рассмотреть нулевые случаи. Если а - корень W(x), то x = a - интеграл, т. к. из этого следует, что dx = 0. Аналогично, со случаем, если b - корень M(y). Тогда для области значений x, при которых W и M не обращаются в ноль, можно провести разделение переменных путем деления на выражение W(x)M(y). После чего выражение можно интегрировать.


Множество видов уравнений, к которым на первый взгляд невозможно применить разделение переменных, оказываются таковыми. Например, в тригонометрии это достигается за счет тождественных преобразований. Также часто может быть уместной какая-либо остроумная замена, после которой можно будет использовать метод разделенных переменных. Типы дифференциальных уравнений 1 порядка могут выглядеть самым разным образом.

Линейные уравнения

Не менее важный тип дифференциальных уравнений, решение которых происходит путем подстановки и сведения их к методу разделенных переменных.

  • Q(x)y + P(x)y" = R(x) - представляет собой уравнение, линейное при рассмотрении относительно функции и ее производной. P, Q, R - представляют собой непрерывные функции.

Для случаев, когда P(x) не равном 0, можно привести уравнение к разрешенному относительно y" виду, поделив все части на P(x).

  • y" + h(x)y = j(x), в котором h(x) и j(x) представляют собой соотношения функций Q/P и R/P, соответственно.

Решение для линейных уравнений

Линейное уравнение можно назвать однородным в случае, когда j(x) = 0, то есть h(x)y+ y" = 0. Такое уравнение называется однородным и легко разделяется: y"/y = -h(x). Интегрируя его, получаем: ln|y| = -H(x) + ln(C). Откуда y выражается в виде y = Ce-H(x).

Например, z" = zCos(x). Разделяя переменные и приводя уравнение к дифференциальному виду, после чего интегрируя, получим, что общее решение будет иметь выражение y = CeSin(x).

Неоднородным называется линейное уравнение в его общем виде, то есть j(x) не равно 0. Его решение состоит из нескольких этапов. Сначала следует решить однородное уравнение. То есть приравнять j(x) к нулю. Пусть u - одно из решений соответствующего однородного линейного уравнения. Тогда имеет место быть тождество u" + h(x)u = 0.

Проведем в y" + h(x)y = j(x) замену вида y = uv и получим (uv)" + h(x)uv = j(x) или u"v + uv" + h(x)uv = j(x). Приведя уравнение к виду u(u" + h(x)u) + uv" = j(x) можно заметить, что в первой части u" + h(x)u = 0. Откуда получаем v"(x) = j(x) / u(x). Отсюда вычисляем первообразную ∫v = V+С. Проведя обратную замену, находим y = u(V+C), где u - решение однородного уравнения, а V - первообразная соотношения j / u.

Найдем решение для уравнения y"-2xy = 2, которое относится к типу дифференциальных уравнений первого порядка. Для этого сначала решим однородное уравнение u" - 2xu = 0. Получим u = e2x + C. Для простоты решения положим C = 0, т. к. для решения поставленной задачи нам нужно лишь одно из решений, а не всевозможные варианты.

После чего проведем подстановку y = vu и получим v"(x)u + v(u"(x) - 2u(x)x) = 2. Затем: v"(x)e2x = 2, откуда v"(x) = 2e-2x. Тогда первообразная V(x) = -∫e-2xd(-2x) = - e-2x + С. В итоге общее решение для y" - 2xy = 2 будет y = uv = (-1)(e2x + С) e-2x = - 1 - Ce-2x.


Как определить тип дифференциального уравнения? Для этого следует разрешить его относительно производной и посмотреть, можно воспользоваться методом разделения переменных напрямую или подстановкой.

Определение. Уравнение вида

, неизвестную функцию и ее производные называютдифференциальным уравнением n -го порядка.

Определение. Уравнение вида

связывающее независимую переменную , неизвестную функцию и ее производную называется дифференциальным уравнением первого порядка .

Порядком дифференциального уравнения называют порядок старшей производной, входящей в это уравнение.

Определение. Общим решением дифференциального уравнения (2) в области называют функцию , где с – произвольная постоянная, удовлетворяющая следующим условиям:

1) для каждого числа с функция является решением уравнения (2);

2) если , то существует такое число, что решение удовлетворяет начальному условию .

Если общее решение получено в неявном виде , то называют общим интегралом, а частным интегралом уравнения (8).

Если дифференциальное уравнение (8) можно разрешить относительно , то оно примет вид:

Дифференциальное уравнение (9) называют разрешенным относительно производной .

Уравнение (9) записывают иногда в виде:

где функции двух переменных.

Теорема Коши. (Теорема существования и единственности решения дифференциального уравнения (9)). Если в уравнении (9) функция и ее частная производная по определены и непрерывны в области плоскости (XOY ) и – произвольная точка из , то существует, причем единственное, решение этого уравнения , удовлетворяющее начальному условию .

Задачу нахождения решения уравнения (9) с заданным начальным условием называют задачей Коши .

Определение. Частным решением дифференциального уравнения (9) называют любую функцию , которая получается из общего решения, если произвольной постоянной придать определенное значение .

Определение. Дифференциальное уравнение I порядка называют уравнением сразделяющимися переменными , если его можно записать в виде

или , (12)

где заданные функции.

Для решения уравнения (11) разделим переменные:

Или разделим обе части (12) на :

откуда

Определение. Уравнение или (13) называют уравнением с разделенными переменными .

Определение. Функция называетсяоднородной функцией нулевого измерения, если она зависит только от отношения , т.е. .

Определение. Однородным дифференциальным уравнением называется уравнение вида (14)

Введем новую неизвестную функцию, положив , или . Дифференцируя, получим .

Подставим в уравнение (14), преобразуем его к виду . Разделяя переменные и интегрируя, найдем

Отсюда .

После выполнения интегрирования нужно вернуться к функции , положив .

Пример . Решить уравнение .


Выражая производную, получим или .

Положим . Тогда , . Подставив в уравнение, получаем . Откуда .

Разделим переменные .

После интегрирования находим

или .

Окончательно .

Определение. Линейным дифференциальным уравнением называется уравнение вида

Введем две новые неизвестные функции и , положив . Поскольку неизвестных функций стало две, а условий на эти функции только одно (их произведение должно удовлетворять уравнению (15)), то еще одно условие на эти функции мы можем наложить произвольно, чем мы и воспользуемся ниже.

Подставим в (15),

получим

или (16)

В качестве функции выберем любую функцию, удовлетворяющую условию . (17)

Получим уравнение с разделяющимися переменными для нахождения . Проинтегрируем это уравнение, полагая постоянную интегрирования равной нулю (последнее законно, так как нас устраивает любое решение уравнения (17)):

Подставим найденное значение в уравнение (16):

Интегрируя, найдем функцию : . Перемножив найденные функции и , получим общее решение уравнения (15).

Определение. Уравнением Бернулли называется уравнение вида

где m – любое действительное число. Решается это уравнение с помощью того же приема, что и линейное уравнение.

Определение. Уравнение

называется уравнением полного дифференциала, если его левая часть представляет собой полный дифференциал некоторой функции . В этом случае уравнение (18) можно переписать в виде . Общий интеграл уравнения (18) будет

Теорема. Пусть функции имеют непрерывные частные производные в некоторой области (D ) плоскости (XOY ). Для того, чтобы выражение было полным дифференциалом некоторой функции , необходимо и достаточно, чтобы во всех точках области (D ) выполнялось равенство

Пусть дано уравнение (18), для которого выполняется условие (20). Последнее означает, что существует функция такая, что

Чтобы решить уравнение (18), нужно, исходя из равенств (21), найти функцию и записать общий интеграл уравнения (18) в форме (19).

Пример . Найти решение уравнения , удовлетворяющее условию .

Имеем: , .

Найдем и :

Таким образом, , т.е. существует такая функция , что

Для нахождения проинтегрируем по x первое из равенств (22):

Здесь неизвестная функция играет роль постоянной интегрирования. Для нахождения продифференцируем (23) по y :

С другой стороны, из (22) имеем Из этих двух равенств получаем или .

Отсюда . (24)

Подставляя в (24), получаем, согласно (19), общий интеграл данного уравнения в виде .

Замечание. Так как, согласно (19), функция приравнивается произвольной постоянной, то при выполнении интегрирования (24) постоянную интегрирования можно не писать.