Фенолы — номенклатура, получение, химические свойства. Химические свойства фенолов Свойства и получение фенола

По числу гидроксильных групп:

Одноатомные; например:

Двухатомные; например:



Трехатомные; например:



Существуют фенолы и большей атомности.

Простейшие одноатомные фенолы


С 6 Н 5 ОН - фенол (гидроксибензол), тривиальное название - карболовая кислота.



Простейшие двухатомные фенолы


Электронное строение молекулы фенола. Взаимное влияние атомов в молекуле

Гидроксильная группа -ОН (как и алкильные радикалы) является заместителем 1 рода, т. е. электронодонором. Это обусловлено тем, что одна из неподеленных электронных пар гидроксильного атома кислорода вступает в р, π-сопряжение с π-системой бензольного ядра.



Результатом этого является:


Повышение электронной плотности на атомах углерода в орто- и пара- положениях бензольного ядра, что облегчает замещение атомов водорода в этих положениях;


Увеличение полярности связи О-Н, приводящее к усилению кислотных свойств фенолов по сравнению со спиртами.


В отличие от спиртов, фенолы частично диссоциируют в водных растворах на ионы:



т. е. проявляют слабокислотные свойства.

Физические свойства

Простейшие фенолы при обычных условиях представляют собой низкоплавкие бесцветные кристаллические вещества с характерным запахом. Фенолы малорастворимы в воде, но хорошо растворяются в органических растворителях. Являются токсичными веществами, вызывают ожоги кожи.

Химические свойства

I. Реакции с участием гидроксильной группы (кислотные свойства)


(реакция нейтрализации, отличие от спиртов)



Фенол - очень слабая кислота, поэтому феноляты разлагаются не только сильными кислотами, но даже такой слабой кислотой, как угольная:



II. Реакции с участием гидроксильной группы (образование сложных и простых эфиров)

Как и спирты, фенолы могут образовывать простые и сложные эфиры.


Сложные эфиры образуются при взаимодействии фенола с ангидридами или хпорангидридами карбоновых кислот (прямая этерификация карбоновыми кислотами протекает труднее):



Простые эфиры (алкилариловые) образуются при взаимодействии фенолятов с алкилгалогенидами:



III. Реакции замещения с участием бензольного ядра


Образование белого осадка трибромфенола иногда рассматривается как качественная реакция на фенол.



IV. Реакции присоединения (гидрирование)


V. Качественная реакция с хлоридом железа (III)

Одноатомные фенолы + FeCl 3 (р-р) → Сине-фиолетовая окраска, исчезающая при подкислении.

Реакции фенола можно разделить на реакции гидроксильной группы и реакции замещения в ароматическом кольце.

Реакции гидроксильной группы

1. Диссоциация:

С 6 Н 5 +Н 2 О«С 6 Н 5 O - +Н 3 O +

Фенол - слабая кислота (рК a =10,0), более слабая, чем уголь­ная, но более сильная, чем спирты (рК a » 16,0).

2. Феноксид-анион стабилизирован делокализацией заряда по ароматическому кольцу (рис. 42).

При наличии в кольце электроноакцепторных групп электро­ны еще сильнее оттягиваются от атома кислорода, что приво­дит к дополнительной стабилизации аниона. Поэтому 4-хлор-

Рис.42. Взаимодействие между электронами орбитали отрицательно за­ряженного атома кислорода и ароматического кольца в фенолят-анионе

фенол - более сильная кислота, чем фенол, а 2,4,6-тринитрофенол - очень сильная кислота cpK a =0,42. Наоборот, электронодонорные заместители, такие, как -СН 3 , уменьшают кис­лотность фенолов (см. ниже).

Влияние заместителей на кислотность фенола

4. Образование простых эфиров

Реакция феноксид-аниона с галогеналканами известна под на­званием синтеза Вильямсона:

5. Замещение гидроксильной группы на водород: С 6 Н 5 ОН+Zn®С 6 Н 6 +ZnO

Замещение в кольце

1. Фенол реагирует с электрофилами легче, чем бензол. Причи­на - взаимодействие неподеленной электронной пары атома кислорода и p-электронов ароматического кольца, в результате которого повышается электронная плотность.

Вспомним!

Индуктивный эффект

Индуктивный эффект вызван поляризацией s-связей. Связь между углеродом и более электроотрицательным эле­ментом X поляризована. Это значит, что плотность электронного облака выше на одном конце связи, вблизи атома X, и ниже на другом, около атома С. Этот эффект атома X называется индук­тивным эффектом. Если X - более электроотрицательный эле­мент, чем углерод, например F, Cl, Br, говорят, что X обладает отрицательным индуктивным эффектом (-I).

Алкильные группы являются донорами электронов и облада­ют положительным индуктивным эффектом (+I).

Мезомерный эффект

Мезомерный эффект вызван поляризацией p-связей. p-электроны кратной связи смещены в сторону более электро­отрицательного из двух атомов. В карбонильной группе располо­жение электронов является промежуточным между двумя струк­турами:

Реальное строение карбонильной группы изображают так:

Смещение электронной плотности, передаваемое по p-связям, называют мезомерным эффектом (M -эффект).

Заместители в бензольном кольце

При введении в бензольное кольцо какого-либо заместителя вместо одного из атомов водорода реакционная способность полу­чившегося соединения отличается от реакционной способности бензола. Если речь идет о взаимодействии с электрофильными частицами, такими, как катион нитрония NO + 2 , то заместители, подающие электроны в кольцо, ускоряют, а заместители, оттяги­вающие электроны, замедляют реакцию. Заместители, обладаю­щие +I-эффектом, например группа -СН 3 , подают электроны в кольцо. Такие заместители называются атакующими. Замести­тели, обладающие -I-эффектом, как группа -NO 2 , оттягивают электроны и дезактивируют кольцо, они называются дезактиви­рующими.

Влияние заместителя-ОН более сложное. Кроме -I-эффекта, проявляющегося в оттягивании электронов из кольца, играет роль и другой эффект. Атом кислорода имеет две неподеленные электронные пары. Эти электроны могут подаваться на p-орбитали ароматического кольца в результате действия мезомерного эффекта. Смещение электронных пар показывается изогнутой стрелкой:

М-эффект гидроксильной группы проявляется сильнее, чем -I-эффект, поэтому гидроксильная группа активирует кольцо.

Поэтому реакции замещения в кольце фенола идут в более мягких условиях, чем в случае толуола.

2. Галогенирование

При действии на фенол бромной воды образуется осадок 2,4,6-трибромфенола:

4. Окисление

Фенолы легко окисляются даже под действием кислорода воз­духа. При окислении сильными окислителями образуется хинон:

6. Сульфирование

Концентрированная серная кислота сульфирует фенол при

комнатной температуре.

В табл. 38 дается сравнение свойств этанола и фенола. Реакции фенолов с солями диазония будут рассмотрены в §6 (Химические свойства альдегидов).

Простые эфиры

Простыми эфирами называются соединения общей формулой R-О-R", где R и R" - алкильные или арильные радикалы. Ниже приводятся некоторые примеры.

Названия простых эфиров:

СН 3 -O-СН 3 Метоксиметан (диметиловый эфир)

СН 3 -O-СH 2 СН 3 Метоксиэтан (метилэтиловый эфир)

СН 3 СН 2 -О-СН 2 СН 3 Этоксиэтан (диэтиловый эфир)

Если R и R" - две одинаковые группы, эфир называют сим­метричным, если различные - несимметричным, или смешанным. Простые эфиры можно рассматривать как алкопроизводные углеводородов.

Этоксиэтан, обычно называемый диэтиловым эфиром или просто эфиром, - широко распространенный растворитель. Он используется также в медицине для анестезии.

Алифатические эфиры имеют формулу С n Н 2 n +2 О.

Они изомерны спиртам. Циклический простой эфир эпоксиэтан

имеет большое значение в органическом синтезе.

К ароматическим простым эфирам относятся соединения формулы ArOR, где Ar - арильная группа, a R - алкильная или арильная, например:

Физические свойства

Летучесть

1. Простые эфиры легколетучие и легковоспламеняющиеся веще­ства.

2. Низшие алифатические простые эфиры - газы или легколету­чие жидкости. Простые эфиры кипят при температурах более низких, чем изомерные им спирты. Дифениловый эфир - твер­дое вещество, t плавления = 28°С.

Растворимость

1. Простые эфиры плохо растворимы в воде.

2. Вместе с тем простые эфиры широко используются как раство­рители для органических веществ.

Плотность

Пары эфира тяжелее паров воды.

Тяжелые, легковоспламеняющиеся пары эфира очень опасны в пожарном отношении.

Получение диэтилового эфира Диэтиловый эфир получается из этанола:

Лабораторный синтез

1. Диэтиловый эфир получают так же, как и в промышленнос­ти, - из смеси этанола и серной кислоты (см. выше).

2. Синтез Вильямсона

Смесь натриевого производного спирта или фенола с галогеналканами кипятят в спирте до выпадения осадка галогенида на­трия. Затем из смеси выделяют простой эфир фракционной перегонкой:

Химические свойства

1. Простые эфиры - довольно инертные соединения. Реакци­онная способность простых эфиров невысока, они вступают лишь в немногие реакции. Эфиры легко горят, образуя диоксид углеро­да и воду. Поскольку атом кислорода имеет неподеленную элек­тронную пару, он может протонироваться сильными кислотами. При этом образуется оксониевый ион:

Оксониевый ион может атаковаться сильным нуклеофилом. Реакция такого типа протекает при нагревании алифатических простых эфиров с иодоводородной кислотой:

Получившийся спирт R"-ОН также реагирует с HI:

R"OH® HI R"OH 2 ® I- R"I+Н 2 O

В итоге образуется смесь двух иодалканов: R-O-R"+2HI ®RI+R"I+Н 2 О

Другие галогеноводороды, HBr и НСl, реагируют с простыми эфирами значительно труднее.

Алкилариловые эфиры взаимодействуют с иодоводородной кислотой, давая фенол и иодалкан:

ArOR+HI®ArOH+RI

На свету простые эфиры взаимодействуют с кислородом воз­духа, образуя взрывоопасные пероксиды.

Ниже приводится схема методов синтеза и реакций простых эфиров.

Соединения с одной или несколькими гидроксильными группами, присоединенными к бензольному кольцу; называются фенолами. Важнейшим из них является сам фенол:

Фенол был открыт в 1834 г., когда его выделили из каменноугольной смолы. Сначала его называли карболовой кислотой, и это название используется до сих пор для жидкого фенола, содержащего 5% воды. Свое нынешнее название фенол получил в 1841 г.

Все простейшие фенолы при нормальных условиях представляют собой твердые вещества с невысокой температурой плавления. Фенол - бесцветное кристаллическое вещество с температурой плавления 43°С. Он имеет характерный запах. Подобно спиртам, фенолы имеют более высокие температуры кипения, чем можно было бы ожидать по их относительной молекулярной массе. Это обусловлено образованием в фенолах межмолекулярной водородной связи. Выше уже отмечалось, что 2-нитрофенол имеет более низкую температуру кипения, чем 4-нитрофенол. Это объясняется существованием в первом из указанных соединений внутримолекулярной водородной связи, тогда как во втором соединении имеются межмолекулярные водородные связи, делающие его менее летучим (см. разд. 2.2).

Фенолы плохо растворяются в воде, но хорошо растворимы в органических растворителях, в частности в спиртах и эфирах. Фенол ограниченно смешивается с водой лишь при температурах ниже 66°С. Выше 66°С фенол смешивается с водой в любых пропорциях (см. рис. 6.22 и разд. 6.2).

Лабораторные способы получения

Для получения фенола в лабораторных условиях сплавляют при 300-350°С безводную натриевую соль бензолсульфоновой кислоты с твердым гидроксидом натрия, а затем добавляют к смеси разбавленную соляную кислоту:

Бензолсульфоновую кислоту получают сульфированием бензола (см. разд. 18.2). Нейтрализация этой кислоты гидроксидом натрия приводит к образованию ее натриевой соли.

Фенол получают также, подогревая выше 10°С водный раствор хлорида фенилдиазония:

Хлорид фенилдиазония получают диазотированием фениламина (см. разд. 19.4).

Химические свойства фенолов

Реакции гидроксильной группы. Кислотность. Фенол имеет константу кислотности равную 9,95. Таким образом, он обладает свойствами слабой кислоты, хотя и более сильной, чем Метанол, этанол и вода (см. табл. 19.4). Фенолятион, образующийся в результате отщепления иона стабилизируется благодаря делокализации

отрицательного заряда:

Он может рассматриваться как гибрид указанных резонансных форм (см. разд. 2.1 и 18.2).

Подобно спиртам, фенол реагирует с сильно электроположительными металлами, например с натрием, выделяя водород:

Однако в отличие от спиртов фенолы реагируют с гидроксидом натрия:

Фенол обладает не настолько большой кислотностью, как карбоновые кислоты. Карбоновые кислоты, например уксусная или бензойная, способны вытеснять диоксид углерода из гидрокарбоната натрия или карбоната натрия, а фенол не способен. Этой реакцией пользуются в аналитических целях, чтобы отличить карбоновые кислоты от фенолов.

Образование сложных эфиров. Хотя фенол не реагирует с карбоновыми кислотами с образованием сложных эфиров, он реагирует с хлорангидридами карбоновых кислот в щелочных растворах:

Реакция этого типа называется ацилированием.

Образование простых эфиров. Фенол реагирует с галогеноалканами в щелочной среде, образуя простые эфиры:

Эта реакция является примером синтеза Вильямсона (см. предыдущий раздел).

Реакция с пентахлоридом фосфора. В отличие от спиртов фенол не реагирует с галогеноводородами и тригалогенидами фосфора. Однако он медленно реагирует с пентахлоридом фосфора, образуя хлоробензол с низким выходом:

Реакция с хлоридом железа (III). При добавлении нейтрального раствора хлорида железа (III) к фенолу происходит образование комплекса, имеющего фиолетовую окраску. Эта реакция используется в качестве аналитической пробы на фенол. Такая реакция характерна для соединений, содержащих енолъную группу.

Реакция в бензольном кольце. Бензольное кольцо в молекуле фенола подвергается электрофильному замещению легче, чем сам бензол. Это объясняется тем, что несвязывающие электроны на атоме кислорода втягиваются в бензольное кольцо и тем самым активируют его. Гидроксильная группа фенола обладает 2,4-направляющим действием в отношении электрофильных заместителей (см. разд. 18.2).

Галогенирование. Галогенирование фенолов осуществляется в гораздо более мягких условиях, чем галогенирование бензола. Например, при добавлении бромной воды к водному раствору фенола происходит образование белого осадка 2,4,6-трибромо-фенола:

В разд. 18.2 было указано, что бромирование бензола требует присутствия катализатора.

Нитрование. Фенол можно нитровать с помощью разбавленной азотной кислоты. При этом образуется смесь 2-нитрофенола и 4-нитрофенола:

Сопоставим опять эти мягкие условия с условиями протекания соответствующей реакции бензола. Нитрование бензола требуется проводить в смеси концентрированных азотной кислоты и серной кислоты (см. разд. 18.2).

2-Нитрофенол и 4-нитрофенол являются более сильными кислотами, чем фенол. Оба они характеризуются значениями приблизительно равными 7,2. Повышенная кислотность нитрофенолов объясняется тем, что нитрогруппа оттягивает на себя электроны. В результате бензольное кольцо сильнее оттягивает электроны от атома кислорода гидроксильной группы.

Сульфирование. Реакция фенола с концентрированной серной кислотой приводит к образованию смеси гидроксибензолсульфоновых кислот:

Гидроксибензолсульфоновая кислота (выход 85%)

Оба продукта этой реакции реагируют с концентрированной азотной кислотой, образуя 2,4,6-тринитрофенол - желтое кристаллическое вещество, известное под тривиальным названием «пикриновая кислота»:

Вследствие общего электроноакцепторного действия трех нитрогрупп пикриновая кислота оказывается сравнительно сильной кислотой. Она характеризуется константой кислотности близкой к 1, а при взаимодействии с раствором карбоната натрия вытесняет из него диоксид углерода.

Реакции сочетания. Щелочный раствор фенола реагирует с раствором хлорида фенилдиазония, в результате чего образуется оранжевый осадок 4-гидроксифенилазо-бензола:

Этот продукт представляет собой азокраситель. Реакция подобного типа называется реакцией сочетания (в данном случае азосочетания).

Гидроксибензол

Химические свойства

Что такое Фенол? Гидроксибензол, что это такое? Согласно Википедии – это один из простейших представителей своего класса ароматических соединений. Фенолы – это органические ароматические соединения, в молекулах которых к гидроксильной группе присоединены атомы углерода из ароматического кольца. Общая формула Фенолов: С6Н6n(ОН)n . Согласно стандартной номенклатуре, органические вещества этого ряда различают по числу ароматических ядер и ОН- групп. Различают одноатомные аренолы и гомологи, двухатомные арендиолы, терхатомные арентриолы и многоатомные формулы. Также Фенолам свойственно иметь ряд пространственных изомеров. Например, 1,2-дигидроксибензол (пирокатехин ), 1,4-дигидроксибензол (гидрохинон ) являются изомерами.

Спирты и Фенолы отличаются друг от друга наличием ароматического кольца. Этанол является гомологом метанола. В отличие от Фенола, метанол взаимодействует с альдегидами и вступает в реакции этерификации. Утверждение, что гомологами являются метанол и Фенол неверно.

Его подробно рассмотреть структурную формулу Фенола, то можно отметить, что молекула представляет собой диполь. При этом бензольное кольцо – отрицательный конец, а группа ОН – положительный. Наличие гидроксильной группы обуславливает повышение электронной плотности в кольце. Неподеленная пара электронов кислорода вступает в сопряжение с пи-системой кольца, а для атома кислорода характерна sp2 гибридизация. Атомы и атомные группы в молекуле обладают сильным взаимным влиянием друг на друга, и это отражается на физических и химических свойствах веществ.

Физические свойства. Химическое соединение имеет вид бесцветных игольчатых кристаллов, которые розовеют на воздухе, так как подвержены окислению. У вещества специфический химический запах, оно умеренно растворимо в воде, спиртах, щелочи, ацетоне и бензоле. Молярная масса = 94,1 грамм на моль. Плотность = 1,07 г на литр. Кристаллы плавятся при 40-41 градусах Цельсия.

С чем взаимодействует Фенол? Химические свойства Фенола. В связи с тем, что молекула соединения содержится, как ароматическое кольцо, так и гидроксильную группу, то оно проявляет некоторые свойства спиртов и ароматических углеводородов.

С чем реагирует группа ОН ? Вещество не проявляет сильных кислотных свойств. Но является более активным окислителем, чем спирты, в отличие от этанола взаимодействует с щелочами образуя соли-феноляты. Реакция с гидроксидом натрия : С6Н5ОН + NaOH → C6H5ONa + H2O . Вещество вступает в реакцию с натрием (металлическим): 2C6H5OH + 2Na → 2C6H5ONa + H2 .

Фенол не реагирует с карбоновыми кислотами. Эфиры получают при взаимодействии солей фенолятов с галогенангидридами или ангидридами кислот. Для химического соединения не характерны реакции образования простых эфиров. Эфиры образуют феноляты при действии на них галогеналканов или галогенпроизводных аренов. Гидроксибензол реагирует с цинковой пылью, при этом происходит замещение гидроксильной группы на Н , уравнение реакции выглядит следующим образом: C6H5OH + Zn → C6H6 + ZnO .

Химическое взаимодействие по ароматическому кольцу. Для вещества характерны реакции электрофильного замещения, алкилирования, галогенирования, ацилирования, нитрования и сульфирования. Особое значение имеет реакций синтеза салициловой кислоты: C6H5OH + CO2 → C6H4OH(COONa) , протекает в присутствии катализатора гидроксида натрия . Затем при воздействии образуется .

Реакция взаимодействия с бромной водой является качественной реакцией на Фенол. C6H5OH + 3Br2 → C6H2Br2OH + 3HBr . При бромировании образуется твердое белое вещество — 2,4,6-трибромфенол . Еще одна качественная реакция – с хлоридом железа 3 . Уравнение реакции выглядит следующим образом: 6C6H5OH + FeCl3 → (Fe(C6H5OH)6)Cl3 .

Реакция нитрования Фенола: C6H5OH + 3HNO3 → C6H2(NO2)3OH + 3 H2O . Для вещества также характерна реакция присоединения (гидрирования) в присутствии металлических катализаторов, платины, оксида алюминия, хрома и так далее. В результате образуются циклогексанол и циклогексанон .

Химическое соединение подвергается окислению. Устойчивость вещества значительно ниже, чем у бензола. В зависимости от условий реакции и природы окислителя образуются разные продукты реакции. Под действием перекиси водорода в присутствии железа образуется двухатомный Фенол; при действии диоксида марганца , хромовой смеси в подкисленной среде – пара-хинон.

Фенол реагирует с кислородом, реакция горения: С6Н5ОН +7О2 → 6СО2 + 3Н2О . Также особое значение для промышленности имеет реакция поликонденсации с формальдегидом (например, метаналем ). Вещество вступает в реакцию поликонденсации до тех пор, пока не израсходуется полностью один из реагентов и не образуются огромные макромолекулы. В результате образуются твердые полимеры, фенолформальдегидные или формальдегидные смолы . Фенол не взаимодействует с метаном.

Получение. На данный момент существуют и активно применяются несколько методов синтеза гидроксибензола. Кумольный способ получения Фенола является наиболее распространенным из них. Таким способом синтезируют порядка 95% всего объема производства вещества. При этом некаталитическому окислению воздухом подвергается кумол и образуется гидропероксид кумола . Полученное соединение разлагается под действием серной кислоты на ацетон и Фенол. Дополнительным побочным продуктом реакции является альфа-метилстирол .

Также соединение можно получить при окислении толуола , промежуточным продуктом реакции будет являться бензойная кислота . Таким образом, синтезируют около 5% вещества. Все остальное сырье для различных нужд выделяют из каменноугольной смолы.

Как получить из бензола? Фенол можно получить с помощью реакции прямого окисления бензола NO2 () с дальнейшим кислотным разложением гидропероксида втор-бутилбензола . Как из хлорбензола получить Фенол? Существует два варианта получения из хлорбензола данного химического соединения. Первый – реакция взаимодействия со щелочью, например, с гидроксидом натрия . В результате образуется Фенол и поваренная соль. Второй – реакция с водяным паром. Уравнение реакции выглядит следующим образом: C6H5-Cl + H2O → C6H5-OH + HCl .

Получение бензола из Фенола. Для этого сначала требуется обработать бензол хлором (в присутствии катализатора), а затем прибавить к полученному соединению щелочь (например, NaOH ). В итоге образуется Фенол и .

Превращение метан — ацетилен — бензол — хлорбензол можно осуществить следующим образом. Сначала проводится реакция разложения метана при высокой температуре 1500 градусов Цельсия до ацетилена (С2Н2 ) и водорода. Затем ацетилен при особых условиях и высокой температуре переводят в бензол . К бензолу прибавляют хлор в присутствии катализатора FeCl3 , получают хлорбензол и соляную кислоту: C6H6 + Cl2 → C6H5Cl + HCl .

Одним из структурных производных Фенола является аминокислота , которая имеет важное биологическое значение. Данную аминокислоту можно рассмотреть в виде пара-замещенного Фенола или альфа-замещенного пара-крезола . Крезолы – достаточно распространены в природе на ряду с полифенолами. Также свободную форму вещества можно обнаружить в некоторых микроорганизмах в равновесном состоянии с тирозином .

Гидроксибензол применяется:

  • при производстве бисфенола А , эпоксидной смолы и поликарбоната ;
  • для синтеза фенолформальдегидных смол, капрона, нейлона;
  • в нефтеперерабатывающей промышленности, при селективной очистке масел от ароматических соединений серы и смол;
  • при производстве антиоксидантов, поверхностно-активных веществ, крезолов , лек. препаратов, пестицидов и антисептических препаратов;
  • в медицине в качестве антисептического и обезболивающего средства для местного использования;
  • в качестве консерванта при изготовлении вакцин и копченых продуктов питания, в косметологии при проведении глубокого пилинга;
  • для дезинфекции животных в скотоводстве.

Класс опасности. Фенол – крайне токсичное, ядовитое, едкое вещество. При вдыхании летучего соединения нарушается работа центральной нервной системы, пары раздражают слизистую глаз, кожу, дыхательные пути и вызывают сильные химические ожоги. При попадании на кожу вещество быстро всасывается в кровоток и достигает тканей мозга, вызывая паралич дыхательного центра. Смертельная доза при приеме внутрь для взрослого составляет от 1 до 10 грамм.

Фармакологическое действие

Антисептическое, прижигающее.

Фармакодинамика и фармакокинетика

Средство проявляет бактерицидную активность по отношению в аэробным бактериям, их вегетативным формам и грибам. Практически не оказывает влияния на споры грибов. Вещество вступает во взаимодействие с белковыми молекулами микробов и приводит к их денатурации. Таким образом, нарушается коллоидное состояние клетки, значительно повышается ее проницаемость, нарушаются окислительно-восстановительные реакции.

В водном растворе является отличным дезинфицирующим средством. При использовании 1,25% раствора практически микроорганизмы погибают в течение 5-10 минут. Фенол, в определенной концентрации оказывает прижигающее и раздражающее действие на слизистую оболочку. Бактерицидный эффект от применения средства усиливается с ростом температуры и кислотности.

При попадании на поверхность кожи, даже если она не повреждена, лекарство быстро всасывается, проникает в системный кровоток. При системной абсорбции вещества наблюдается его токсическое действие, преимущественно на центральную нервную систему и дыхательный центр в головном мозге. Порядка 20% от принятой дозы подвергается окислению, вещество и продукты его метаболизма выводятся с помощью почек.

Показания к применению

Применение Фенола:

  • для дезинфекции инструментов и белья и дезинсекции;
  • в качестве консерванта в некоторых лек. средствах, вакцинах, свечах и сыворотках;
  • при поверхностных пиодермиях , фолликулите , фликтене , остиофолликулите , сикозе , стрептококковом импетиго ;
  • для лечения воспалительных заболеваний среднего уха, ротовой полости и глотки, пародонтита , генитальных остроконечных кондилом .

Противопоказания

Вещество не используют:

  • при распространенных поражениях слизистой оболочки или кожи;
  • для лечения детей;
  • во время кормления грудью и ;
  • при на Фенол.

Побочные действия

Иногда лекарственное средство может спровоцировать развитие аллергических реакций, зуд, раздражение в месте нанесения и чувство жжения.

Инструкция по применению (Способ и дозировка)

Консервацию лекарственных препаратов, сывороток и вакцин проводят с помощью 0,5% растворов Фенола.

Для наружного применения лекарство используют в виде мази. Препарат наносят тонким слоем на пораженные участки кожи несколько раз в сутки.

При лечении вещество используют в форме 5% раствора в . Препарат подогревают и закапывают по 10 капель в пораженное ухо на 10 минут. Затем необходимо удалить остатки лекарства с помощью ваты. Процедуру повторяют 2 раза в день в течение 4 суток.

Препараты Фенола для лечения ЛОР-заболеваний используют в соответствии с рекомендациями в инструкции. Продолжительность терапии – не более 5 дней.

Для ликвидации остроконечных кондилом их обрабатывают 60% раствором Фенола или 40% раствором трикрезола . Процедуру проводят один раз в 7 дней.

При дезинфекции белья применяют 1-2% растворы на основе мыла. С помощью мыльно-фенольного раствора обрабатывают помещение. При дезинсекции используются фенольно-скипидарные и керосиновые смеси.

Передозировка

При попадании вещества на кожу возникают жжение, покраснение кожи, анестезия пораженного участка. Поверхность обрабатывают растительным маслом или полиэтиленгликолем . Проводят симптоматическую терапию.

Симптомы отравления Фенолом при попадании внутрь. Наблюдаются сильные боли в животе, глотке, в ротовой полости, пострадавшего рвет бурой массой, бледность кожи, общая слабость и головокружение

Средством нельзя обрабатывать обширные участки кожи.

Перед использованием вещества для дезинфекции предметов быта, их необходимо механически очистить, так как средство абсорбируется органическими соединениями. После обработки вещи могут еще длительное время сохранять специфический запах.

Химическое соединение нельзя использовать для обработки помещений для хранения и готовки пищевой продукции. Оно не влияет на окраску и структуру ткани. Повреждает поверхности, покрытые лаком.

Детям

Средство нельзя использовать в педиатрической практике.

При беременности и лактации

Фенол не назначают во время кормления грудью и при беременности .

Препараты, в которых содержится (Аналоги)

Совпадения по коду АТХ 4-го уровня:

Фенол входит в состав следующих препаратов: Ферезол , Фенола раствор в глицерине , Фармасептик . В качестве консерванта содержится в препаратах: Экстракт Белладонны , Набор для кожной диагностики медикаментозной аллергии , и так далее.

Названия фенолов составляют с учетом того, что для родоначальной структуры по правилам ИЮПАК сохранено тривиальное название «фенол». Нумерацию атомов углерода бензольного кольца начинают от атома, непосредственно связанного с гидроксильной группой (если она является старшей функцией), и продолжают в такой последовательности, чтобы имеющиеся заместители подучили наименьшие номера.

Монозамещенные производные фенола, например метилфенол (крезол), могут существовать в виде трех структурных изомеров - орто-, мета- и паракрезолов.

Физические свойства.

Фенолы в большинстве своем - кристаллические вещества (-крезол - жидкость) при комнатной температуре. Они обладают характерным запахом, довольно плохо растворимы в воде, но хорошо растворяются в водных растворах щелочей (см. ниже). Фенолы образуют прочные водородные связи и имеют довольно высокие температуры кипения.

Способы получения.

1. Получение из галогенбензолов. При нагревании хлорбензола и гидроксида натрия под давлением получают фенолят натрия, при дальнейшей обработке которого кислотой образуется фенол:

2. Получение из ароматических сульфокислот (см. реакцию 3 в разделе «Химические свойства бензола», § 21). Реакция проводится при сплавлении сульфокислот с щелочами. Первоначально образующиеся феноксиды обрабатывают сильными кислотами для получения свободных фенолов. Метод обычно применяют для получения многоатомных фенолов:

Химические свойства.

В фенолах р-орбиталь атома кислорода образует с ароматическим кольцом единую -систему. Вследствие такого взаимодействия электронная плотность у атома кислорода уменьшается, а в бензольном кольце повышается. Полярность связи О-Н увеличивается, и водород ОН-группы становится более реакционноспособным и легко замещается на металл даже при действии щелочей (в отличие от предельных одноатомных спиртов).

Кроме того, в результате такого взаимного влияния в молекуле фенола увеличивается реакционная способность бензольного кольца в орто- и кара-положениях в реакциях электрофильного замещения (галогенирования, нитрования, поликонденсации и т.д.):

1. Кислотные свойства фенола проявляются в реакциях со щелочами (сохранилось старинное название «карболовая кислота»):

Фенол, однако, является очень слабой кислотой. При пропускании через раствор фенолятов углекислого или сернистого газов выделяется фенол - такая реакция доказывает, что фенол - более слабая кислота, чем угольная и сернистая:

Кислотные свойства фенолов ослабляются при введении в кольцо заместителей I рода и усиливаются при введении заместителей II рода.

2. Образование сложных эфиров. В отличие от спиртов, фенолы не образуют сложных эфиров при действии на них карбоновых кислот; для этого используются хлоран-гидриды кислот:

3. Галогенирование. При действии на фенол бромной воды (сравните с условиями бромирования бензола - § 21) образуется осадок 2,4,6-трибромфенола:

Это - качественная реакция для обнаружения фенола.

4. Нитрование. Под действием 20%-ной азотной кислоты фенол легко превращается в смесь орто- и пара-нитрофенолов. Если нитровать фенол концентрированной азотной кислотой, то образуется 2,4,6-тринитрофенол - сильная кислота (пикриновая).

5. Окисление. Фенолы легко окисляются даже под действием кислорода воздуха.

Так, при стоянии на воздухе фенол постепенно окрашивается в розовато-красный цвет. При энергичном окислении фенола хромовой смесью основным продуктом окисления является хинон. Двухатомные фенолы окисляются еще легче. При окислении гидрохинона образуется хинон: