Равноускоренное движение график. Графическое представление равноускоренного прямолинейного движения

Если траектория движения точки известна, то зависимость пути , пройденного точкой, от истекшего промежутка времени дает полное описание этого движения. Мы видели, что для равномерного движения такую зависимость можно дать в виде формулы (9.2). Связь между и для отдельных моментов времени можно задавать также в виде таблицы, содержащей соответственные значения промежутка времени и пройденного пути. Пусть нам дано, что скорость некоторого равномерного движения равна 2 м/с. Формула (9.2) имеет в этом случае вид . Составим таблицу пути и времени такого движения:

Зависимость одной величины от другой часто бывает удобно изображать не формулами или таблицами, а графиками, которые более наглядно показывают картину изменения переменных величин и могут облегчать расчеты. Построим график зависимости пройденного пути от времени для рассматриваемого движения. Для этого возьмем две взаимно перпендикулярные прямые - оси координат; одну из них (ось абсцисс) назовем осью времени, а другую (ось ординат) - осью пути. Выберем масштабы для изображения промежутков времени и пути и примем точку пересечения осей за начальный момент и за начальную точку на траектории. Нанесем на осях значения времени и пройденного пути для рассматриваемого движения (рис. 18). Для «привязки» значений пройденного пути к моментам времени проведем из соответственных точек на осях (например, точек 3 с и 6 м) перпендикуляры к осям. Точка пересечения перпендикуляров соответствует одновременно обеим величинам: пути и моменту , - этим способом и достигается «привязка». Такое же построение можно выполнить и для любых других моментов времени и соответственных путей, получая для каждой такой пары значений время - путь одну точку на графике. На рис. 18 выполнено такое построение, заменяющее обе строки таблицы одним рядом точек. Если бы такое построение было выполнено для всех моментов времени, то вместо отдельных точек получилась бы сплошная линия (также показанная на рисунке). Эта линия и называется графиком зависимости пути от времени или, короче, графиком пути.

Рис. 18. График пути равномерного движения со скоростью 2 м/с

Рис. 19. К упражнению 12.1

В нашем случае график пути оказался прямой линией. Можно показать, что график пути равномерного движения всегда есть прямая линия; и обратно: если график зависимости пути от времени есть прямая линия, то движение равномерно.

Повторяя построение для другой скорости движения, найдем, что точки графика для большей скорости лежат выше, чем соответственные точки графика для меньшей скорости (рис. 20). Таким образом, чем больше скорость равномерного движения, тем круче прямолинейный график пути, т. е. тем больший угол он составляет с осью времени.

Рис. 20. Графики пути равномерных движений со скоростями 2 и 3 м/с

Рис. 21. График того же движения, что на рис. 18, вычерченный в другом масштабе

Наклон графика зависит, конечно, не только от числового значения скорости, но и от выбора масштабов времени и длины. Например, график, изображенный на рис. 21, дает зависимость пути от времени для того же движения, что и график рис. 18, хотя и имеет другой наклон. Отсюда ясно, что сравнивать движения по наклону графиков можно только в том случае, если они вычерчены в одном и том же масштабе.

С помощью графиков пути можно легко решать разные задачи о движении. Для примера на рис. 18 штриховыми линиями показаны построения, необходимые для того, чтобы решить следующие задачи для данного движения: а) найти путь, пройденный за время 3,5 с; б) найти время, за которое пройден путь 9 м. На рисунке графическим путем (штриховые линии) найдены ответы: а) 7 м; б) 4,5 с.

На графиках, описывающих равномерное прямолинейное движение, можно откладывать по оси ординат вместо пути координату движущейся точки. Такое описание открывает большие возможности. В частности, оно позволяет различать направление движения по отношению к оси . Кроме того, приняв начало отсчета времени за нуль, можно показать движение точки в более ранние моменты времени, которые следует считать отрицательными.

Рис. 22. Графики движений с одной и той же скоростью, но при различных начальных положениях движущейся точки

Рис. 23. Графики нескольких движений с отрицательными скоростями

Например, на рис. 22 прямая I есть график движения, происходящего с положительной скоростью 4 м/с (т. е. в направлении оси ), причем в начальный момент движущаяся точка находилась в точке с координатой м. Для сравнения на том же рисунке дан график движения, которое происходит с той же скоростью, но при котором в начальный момент движущаяся точка находится в точке с координатой (прямая II). Прямая. III соответствует случаю, когда в момент движущаяся точка находилась в точке с координатой м. Наконец, прямая IV описывает движение в случае, когда движущаяся точка имела координату в момент с.

Мы видим, что наклоны всех четырех графиков одинаковы: наклон зависит только от скорости движущейся точки, а не от ее начального положения. При изменении начального положения весь график просто переносится параллельно самому себе вдоль оси вверх или вниз на соответственное расстояние.

Графики движений, происходящих с отрицательными скоростями (т. е. в направлении, противоположном направлению оси ), показаны на рис. 23. Они представляют собой прямые, наклоненные вниз. Для таких движений координата точки с течением времени уменьшается., имела координаты

Графики пути можно строить и для случаев, в которых тело движется равномерно в течение определенного промежутка времени, затем движется равномерно, но с другой скоростью в течение другого промежутка времени, затем снова меняет скорость и т. д. Например, на рис. 26 показан график движения, в котором тело двигалось в течение первого часа со скоростью 20 км/ч, в течение второго часа - со скоростью 40 км/ч и в течение третьего часа - со скоростью 15 км/ч.

Задание: 12.8. Постройте график пути для движения, в котором за последовательные часовые промежутки тело имело скорости 10, -5, 0, 2, -7 км/ч. Чему равно суммарное перемещение тела?

Графическое представление равноускоренного прямолинейного движения.

Перемещение при равноускоренном движении.

I уровень.

Многие физические величины, описывающие движения тел, с течением времени изменяются. Поэтому для большей наглядности описания движение часто изображают графически.

Покажем, как графически изображаются зависимости от времени кинематических величин, описывающих прямолинейное равноускоренное движения.

Равноускоренное прямолинейное движение - это движение, при котором скорость тела за любые равные промежутки времени изменяется одинаково, т. е. это движение с постоянным по модулю и направлению ускорением.

a=const - уравнение ускорения. Т. е а имеет численное значение, которое не изменяется со временем.

По определению ускорения

Отсюда мы уже нашли уравнения для зависимости скорости от времени: v = v0 + at.

Посмотрим, как это уравнение можно использовать для графического представления равноускоренного движения.

Изобразим графически зависимости кинематических величин от времени для трех тел

.

1 тело движется вдоль оси 0Х, при этом увеличивает свою скорость (вектор ускорения а сонаправленн с вектором скорости v). vx >0, ах > 0

2 тело движется вдоль оси 0Х, при этом уменьшает свою скорость (вектор ускорения а не сонаправленн с вектором скорости v). vx >0, ах < 0

2 тело движется против оси 0Х, при этом уменьшает свою скорость (вектор ускорения а не сонаправленн с вектором скорости v). vx < 0, ах > 0

График ускорения

Ускорение по определению величина постоянная. Тогда для представленной ситуации график зависимости ускорения от времени a(t) будет иметь вид:

Из графика ускорения можно определить как изменялась скорость – увеличивалась или уменьшалась и на какое численное значение изменилась скорость и у какого тела скорость больше изменилась.

График скорости

Если сравнить зависимость координаты от времени при равномерном движении и зависимость проекции скорости от времени при равноускоренном движении, можно увидеть, что эти зависимости одинаковы:

х= х0 + vx t vx = v 0 x + a х t

Это значит, что и графики зависимостей имеют одинаковый вид.

Для построения этого графика на оси абсцисс откладывают время движения, а на оси ординат - скорость (проекцию скорости) тела. В равноускоренном движении скорость тела с течением времени изменяется.

Перемещение при равноускоренном движении.

При равноускоренном прямолинейном движении скорость тела определяется формулой

vx = v 0 x + a х t

В этой формуле υ0 – скорость тела при t = 0 (начальная скорость ), a = const – ускорение. На графике скорости υ (t ) эта зависимость имеет вид прямой линии (рис.).

По наклону графика скорости может быть определено ускорение a тела. Соответствующие построения выполнены на рис. для графика I. Ускорение численно равно отношению сторон треугольника ABC : MsoNormalTable">

Чем больше угол β, который образует график скорости с осью времени, т. е. чем больше наклон графика (крутизна ), тем больше ускорение тела.

Для графика I: υ0 = –2 м/с, a = 1/2 м/с2.

Для графика II: υ0 = 3 м/с, a = –1/3 м/с2.

График скорости позволяет также определить проекцию перемещения s тела за некоторое время t . Выделим на оси времени некоторый малый промежуток времени Δt . Если этот промежуток времени достаточно мал, то и изменение скорости за этот промежуток невелико, т. е. движение в течение этого промежутка времени можно считать равномерным с некоторой средней скоростью, которая равна мгновенной скорости υ тела в середине промежутка Δt . Следовательно, перемещение Δs за время Δt будет равно Δs = υΔt . Это перемещение равно площади заштрихованной полоски (рис.). Разбив промежуток времени от 0 до некоторого момента t на малые промежутки Δt , получим, что перемещение s за заданное время t при равноускоренном прямолинейном движении равно площади трапеции ODEF . Соответствующие построения выполнены для графика II на рис. 1.4.2. Время t принято равным 5,5 с.

Так как υ – υ0 = at , окончательная формула для перемещения s тела при равномерно ускоренном движении на промежутке времени от 0 до t запишется в виде:

Для нахождения координаты y тела в любой момент времени t y t : https://pandia.ru/text/78/516/images/image008_63.gif" width="84" height="48 src=">

Для нахождения координаты x тела в любой момент времени t нужно к начальной координате x 0 прибавить перемещение за время t :

При анализе равноускоренного движения иногда возникает задача определения перемещения тела по заданным значениям начальной υ0 и конечной υ скоростей и ускорения a . Эта задача может быть решена с помощью уравнений, написанных выше, путем исключения из них времени t . Результат записывается в виде

Если начальная скорость υ0 равна нулю, эти формулы принимают вид MsoNormalTable">

Следует еще раз обратить внимание на то, что входящие в формулы равноускоренного прямолинейного движения величины υ0, υ, s , a , y 0 являются величинами алгебраическими. В зависимости от конкретного вида движения каждая из этих величин может принимать как положительные, так и отрицательные значения.

Пример решения задачи:

Петя съезжает со склона горы из состояния покоя с ускорением 0,5 м/с2 за 20 с и дальше движется по горизонтальному участку. Проехав 40 м, он врезается в зазевавщегося Васю и падает в сугроб, снизив свою скорость до 0м/с. С каким ускорением двигался Петя по горизонтальной поверхности до сугроба? Какова длина склона горы, с которой так неудачно съехал Петя?

Дано :

a 1 = 0,5 м/с2

t 1 = 20 с

s 2 = 40 м

Движение Пети состоит из двух этапов: на первом этапе, спускаясь со склона горы, он движется с возрастающей по модулю скоростью; на втором этапе при движении по горизонтальной поверхности его скорость уменьшается до нуля (столкнулся с Васей). Величины, относящиеся к первому этапу движения, запишем с индексом 1, а ко второму этапу с индексом 2.

1 этап.

Уравнение для скорости Пети в конце спуска с горы:

v 1 = v 01 + a 1t 1.

В проекциях на ось X получим:

v 1x = a 1x t .

Запишем уравнение, связывающее проекции скорости, ускорения и перемещения Пети на первом этапе движения:

или т. к. Петя ехал с самого верха горки с начальной скоростью V01=0

(на месте Пети, я бы поостереглась ездить с таких высоких горок)

Учитывая, что начальная скорость Пети на этом 2 этапе движения равна его конечной скорости на первом этапе:

v 02 x = v 1 x , v 2x = 0, где v1 – скорость с которой Петя достиг подножия горки и начал двигаться к Васе. V2x - скорость Пети в сугробе.

Используем уравнение и найдем скорость v1

На горизонтальним участе дороги путь Пети рамен:

НО!!! целесообразнее воспользоваться другим уравнением, т. к. нам не известно время жвижения Пети до Васи t2

Ускорение получиться отрицательным – это значит, что Петя очень старался затормозить не об Васю, а несколько раньше.

Ответ: a 2 = -1,25 м/с2; s 1 = 100 м.

II уровень. Письменно решить задачи.

1. По графикам, изображенным на рисунке, записать уравнения зависимости скорости от времени. Как двигались тела на каждом этапе своего движения(сделать по образцу см. пример).

2. По данному графику ускорения расскажите как меняется скорость тела. Запишите уравнения зависимости скорости от времени, если на момент начала движения (t=0) скорость тела v0х =0. Обратите внимание, что каждый последующий участок движения, тело начинает проходить с уже какой-либо скоростью (которая была достигнута за предыдущее время!).

3. Поезд метро, отходя от станции, может развить скорость 72 км/ч за 20 с. Определить с каким ускорением удаляется от вас сумка, забытая в вагоне метро. Какой путь при этом она проедет?

4. Велосипедист, движущийся со скоростью 3 м/с, начинает спускаться с горы с ускорением 0,8 м/с2. Найдите длину го­ры, если спуск занял 6 с.

5. Начав торможение с ускорением 0,5 м/с2, поезд прошел до остановки 225 м. Какова была его скорость перед началом торможения?

6. Начав двигаться, футбольный мяч достиг скорости 50 м/с, пройдя путь 50 м и врезался в окно. Определите время, за которое мяч прошел этот путь, и ускорение, с которым он двигался.

7. Время реакции соседа дяди Олега = 1,5 мин, за это время он сообразит, что случилось с его окном и успеет выбежать во двор. Определите какую скорость должны развить юные футболисты, что бы радостные владельцы окна их не догнали, если до своего подъезда им нужно бежать 350 м.

8. Два велосипедиста еду навстречу друг другу. Первый, имея скорость 36 км/ч, начал подниматься в гору с ускоре­нием 0,2 м/с2, а второй, имея скорость 9 км/ч, стал спус­каться с горы с ускорением 0,2 м/с2. Через сколько времени и в каком месте они столкнуться из-за своей рассеянности, если длина горы 100 м?

Для большей наглядности движение можно описывать с помощью графиков. График показывает, как изменяется одна величина при изменении другой величины, от которой первая зависит.

Для построения графика обе величины в выбранном масштабе откладывают по осям координат. Если по горизонтальной оси (оси абсцисс) откладывать время, прошедшее с начала отсчета времени, а по вертикальной оси (оси ординат) - значения координат тела, полученный график будет выражать зависимость координаты тела от времени (его также называют графиком движения).

Допустим, что тело движется равномерно вдоль оси X (рис. 29). В моменты времени и т. д. тело находится соответственно в положениях, измеряемых координатами (точка А), .

Это значит, что изменяется только его координата Для того чтобы получить график движения тела, будем откладывать значения по вертикальной оси, а по горизонтальной оси - значения времени График движения представляет собой прямую линию, показанную на рисунке 30. Это и значит, что координата линейно зависит от времени.

График зависимости координаты тела от времени (рис. 30) не следует путать с траекторией движения тела - прямой, во всех точках которой тело побывало при своем движении (см. рис. 29).

Графики движения дают полное решение задачи механики в случае прямолинейного движения тела, так как они позволяют найти положение тела в любой момент времени, в том числе и в моменты времени, предшествовавшие начальному моменту (если предположить, что тело двигалось и до начала отсчета времени). Продолжив график, изображенный на рисунке 29, в сторону, противоположную положительному направлению оси времени, мы, например, найдем, что тело за 3 сек до того, как оно оказалось в точке А, находилось в начале отсчета координаты

По виду графиков зависимости координаты от времени можно судить и о скорости движения. Ясно, что скорость тем больше, чем круче график, т. е. чем больше угол между ним и осью времени (чем больше этот угол, тем больше изменение координаты за одно и то же время).

На рисунке 31 показано несколько графиков движений с различными скоростями. Графики 1, 2 и 3 показывают, что тела движутся вдоль оси X в положительном направлении. Тело, график движения которого - прямая 4, движется в направлении, потивоположном направлению оси X. Из графиков движения можно найти и перемещения движущегося тела за любой промежуток времени.

Из рисунка 31 видно, например, что тело 3 за время между 1 и 5 сек совершило перемещение в положительном направлении, по абсолютной величине равное 2 м, а тело 4 за это же время совершило перемещение в отрицательном направлении, равное по абсолютной величине 4 м.

Наряду с графиками движения часто пользуются графиками скорости. Их получают, откладывая по оси координат проекцию скорости

тела, а по оси абсцисс по-прежнему время. Такие графики показывают, как изменяется скорость с течением времени, т. е. как скорость зависит от времени. В случае прямолинейного равномерного движения эта «зависимость» состоит в том, что скорость с течением времени не меняется. Поэтому график скорости представляет собой прямую, параллельную оси времени (рис. 32). График на этом рисунке относится к случаю, когда тело движется в сторону положительного направления оси X. График II относится к случаю, когда тело движется в противоположном направлении (так как проекция скорости отрицательна).

По графику скорости тоже можно узнать абсолютное значение перемещения тела за данный промежуток времени. Оно численно равно площади заштрихованного прямоугольника (рис. 33): верхнего, если тело движется в сторону положительного направления, и нижнего - в противоположном случае. Действительно, площадь прямоугольника равна произведению его сторон. Но одна из сторон численно равна времени а другая, - скорости . А их произведение как раз и равно абсолютному значению перемещения тела.

Упражнение 6

1. Какому движению соответствует график, изображенный пунктиром на рисунке 31?

2. Пользуясь графиками (см. рис. 31), найдите расстояние между телами 2 и 4 в момент времени сек.

3. По графику, изображенному на рисунке 30, определите модуль и направление скорости.

Задачи по физике - это просто!

Не забываем , что решать задачи надо всегда в системе СИ!

А теперь к задачам!

Элементарные задачи из курса школьной физики по кинематике.


Задача на составление описания движения и составление уравнения движения по заданному графику движения

Дано: график движения тела

Найти :
1. составить описание движения
2. составить уравнение движения тела.

Проекцию вектора скорости определяем по графику, выбрав любой удобный для рассмотрения отрезок времени.
Здесь удобно взять t=4c

Составляем уравнение движения тела:

Записываем формулу уравнения прямолинейного равномерного движения.

Подставляем в нее найденный коэффициент V x (не забываем о минусе!).
Начальная координата тела (X о) соответствует началу графика, тогда X о =3

Составляем описание движения тела:

Желательно сделать чертеж, это поможет не ошибиться!
Не забываем, что все физические величины имеют единицы измерения, их необходимо указывать!

Тело движется прямолинейно и равномерно из начальной точки X о =3м со скоростью 0,75 м/с противоположно направлению оси X.

Задача на определение места и времени встречи двух движущихся тел (при прямолинейном равномерном движении)

Движение тел задано уравнениями движения для каждого тела.

Дано:
1. уравнение движения первого тела
2. уравнение движения второго тела

Найти:
1. координату места встречи
2. момент время (после начала движения), когда произойдет встреча тел

По заданным уравнениям движения строим графики движения для каждого тела в одной системе координат.

Точка пересечения двух графиков движения определяет:

1. на оси t - время встречи (через сколько времени после начала движения произойдет встреча)
2. на оси X - координату места встречи (относительно начала координат)

В результате:

Два тела встретятся в точке с координатой -1,75 м через 1,25 секунд после начала движения.

Для проверки полученных графическим способом ответов можно решить систему уравнений из двух заданных
уравнений движения:

Все было верно!

Для тех, кто почему-то забыл , как построить график прямолинейного равномерного движения:

График движения - это линейная зависимость (прямая), строится по двум точкам.
Выбираем два любых удобных для простоты расчета значения t 1 и t 2 .
Для этих значений t подсчитываем соответствующие значения координат X 1 и X 2 .
Откладываем 2 точки с координатами (t 1 , X 1) и (t 2 , X 2) и соединяем их прямой - график готов!

Задачи на составление описания движения тела и построение графиков движения по заданному уравнению прямолинейного равномерного движения

Задача 1

Дано: уравнение движения тела

Найти:


Заданное уравнение сравниваем с формулой и определяем коэффициенты.
Не забываем делать чертеж, чтобы еще раз обратить внимание на направление вектора скорости.

Задача 2

Дано: уравнение движения тела

Найти:
1. составить описание движения
2. построить график движения

Задача 3

Дано: уравнение движения тела

Найти:
1. составить описание движения
2. построить график движения

Задача 4

Дано: уравнение движения тела

Найти:
1. составить описание движения
2. построить график движения

Описание движения:

Тело находится в состоянии покоя в точке с координатой X=4м (состояние покоя - это частный случай движения, когда скорость тела равна нулю).

Задача 5

Дано:
начальная координата движущейся точки xo=-3 м
проекция вектора скорости Vx=-2 м/с

Найти:
1. записать уравнение движения
2. построить график движения
3. показать на чертеже векторы скорости и перемещения
4. найти координату точки через 10 секунд после начала движения

ГРАФИКИ

Определение вида движения по графику

1. Равноускоренному движению соответствует график зависимости модуля ускорения от времени, обозначенный на рисунке буквой



2. На рисунках изображены графики зависимости моду­ля ускорения от времени для разных видов движения. Какой график соответствует равномерному движению?

1) 1 2) 2 3) 3 4) 4

3.
Тело, двигаясь вдоль оси Ох прямолинейно и равноу­скоренно, за некоторое время уменьшило свою скорость в 2 раза. Какой из графиков зависимости проекции ускорения от времени соответствует такому движению?

1) 1 2) 2 3) 3 4) 4

4. Парашютист движется вертикально вниз с постоянной по зна­чению скоростью. Какой график - 1, 2, 3 или 4 - правильно отражает зависимость его координаты Y от времени движения t относительно поверхности земли? Сопротивлением воздуха пренебречь.

1) 1 2) 2 3) 3 4) 4

5. Какой из графиков зависимости проекции скорости от времени (рис.) соответствует движению тела, брошенного вертикально вверх с некоторой скоро­стью (ось Y направлена вертикально вверх)?

1) 1 2) 2 3) 3 4) 4

6.
Тело бросили вертикально вверх с некоторой началь­ной скоростью с поверхности земли. Какой из графиков зависимости высоты тела над поверхностью земли от времени (рис.) соответствует этому движению?

1) 1 2) 2 3) 3 4) 4

Определение и сравнение характеристик движения по графику

7. На графике приведена зависимость проекции скорости тела от времени при прямолинейном движении. Определите проекцию ускорения тела.

1) – 10 м/с 2

2) – 8 м/с 2

3) 8 м/с 2

8.
На рисунке изображен график зависимости скорости движения тел от времени. Чему равно ускорение тела?

2) 2 м/с 2

9. По графику зависимости проекции скорости от времени, представленному па рисунке, определите ускорение прямоли­нейно движущегося тела в момент времени t = 2 с.

3) 10 м/с 2

10. На рисунке представлен график движения автобуса из пункта А в пункт Б и обратно. Пункт А находится в точке х = 0, а пункт Б в точке х = 30 км. Чему равна скорость автобуса на пути из А в Б?



11. На рисунке представлен график движения автобуса из пункта А в пункт Б и обратно. Пункт А находится в точке х = 0, а пункт Б в точке х = 30 км. Чему равна скорость автобуса на пути из Б в А?

12. Автомобиль движется по прямой улице. На графике представлена зависимость скорости автомобиля от времени. Модуль ускорения максимален в интервале времени

1) от 0 с до 10 с

2) от 10 с до 20 с

3) от 20 с до 30 с

4) от 30 с до 40 с

13. Четыре тела движутся вдоль оси Оx .На рисунке изображены графики зависимости проекций скоростей υ x от времени t для этих тел. Какое из тел движется с наименьшим по модулю ускорением?

1) 1 2) 2 3) 3 4) 4

14. На рисунке представ­лен график зависимости пути S велосипедиста от времени t. Определите интервал времени, когда велосипедист двигался со скоростью 2,5 м/с.

1) от 5 с до 7 с

От 3 с до 5 с

3) от 1 с до 3 с

4) от 0 до 1 с

15. На рисунке представлен график зависимости координаты тела, движущегося вдоль оси , от времени. Сравните скорости v 1 , v 2 и v 3 тела в моменты времени t 1 , t 2 , t 3

1) v 1 > v 2 = v 3

2) v 1 > v 2 > v 3

3) v 1 < v 2 < v 3

4) v 1 = v 2 > v 3

16. На рисунке приведен график зависимости проекции скорости тела от времени.

Проекция ускорения тела в интервале времени от 5 до 10 с представлена графиком

1) 1 2) 2 3) 3 4) 4

17. Материальная точка движется прямолинейно с ускорением, зависимость от времени которого приведена на рисунке. Начальная скорость точки равна 0. Какая точка на графике соответствует максимальной скорости материальной точки:

Составление кинематических зависимостей (функций зависимости кинематических величин от времени) по графику

18. На рис. изображен график зависимости координаты тела от времени. Определите кинематический закон движения этого тела

1) x(t) = 2 + 2t

2) x(t) = – 2 – 2t

3) x(t) = 2 – 2t

4) x(t) = – 2 + 2t

19. По графику зависимости скорости тела от времени определите функцию зависимости скорости этого тела от времени

1) v x = – 30 + 10t

2) v x = 30 + 10t

3) v x = 30 – 10t

4) v x = – 30 + 10t

Определение перемещения и пути по графику

20. По графику зависимости скорости тела от времени определите путь, пройденный прямолинейно движущимся телом за 3 с.

21. Камень брошен вертикально вверх. Проекция его скорости на вертикальное направление изменяется со временем согласно графику на рисунке. Чему равен путь, пройденный камне за первые 3 с?

22. Камень брошен вертикально вверх. Проекция его скорости на вертикальное направление изменяется со временем согласно графику на рисунке к з.17. Чему равен путь, пройденный камнем за все время полета?



23. Камень брошен вертикально вверх. Проекция его скорости на вертикальное направление изменяется со временем согласно графику на рисунке к з.17. Чему равно перемещение камня за первые 3 с?



24. Камень брошен вертикально вверх. Проекция его скорости на вертикальное направление изменяется со временем согласно графику на рисунке к з.17. Чему равно перемещение камня за все время полета?



25. На рисунке дан график зависимости проекции скорости тела, движущегося вдоль оси Ох, от времени. Чему равен путь, пройденный телом к моменту времени t = 10 с?



26. Тележка начинает движение из состояния покоя вдоль бу­мажной ленты. На тележке стоит капельница, которая че­рез равные промежутки времени оставляет на ленте пятна краски.

Выберите график зависимости величины скорости от вре­мени, который правильно описывает движение тележки.

1) 1 2) 2 3) 3 4) 4

УРАВНЕНИЯ

27. Движение троллейбуса при аварийном торможении задано уравнением: x = 30 + 15t – 2,5 t 2 , м Чему равна начальная координата троллейбуса?



28. Движение самолета при разбеге задано уравнением: x = 100 + 0,85t 2 , м Чему равно ускорение самолета?


3) 1,7 м/с 2


29. Движение легкового автомобиля задано уравнением: x = 150 + 30t + 0,7t 2 , м. Чему равна начальная скорость автомобиля?



30. Уравнение зависимости проекции скорости движу­щегося тела от времени: v x = 2 +3t (м/с). Каково соответствующее уравнение проекции перемещения тела?

1) S x = 2t + 3t 2 2) S x = 4t + 3t 2 3) S x = t + 6t 2 4)S x = 2t + 1,5t 2

31. Зависимость координаты от времени для некоторого тела описывается уравнением х = 8t – t 2 . В какой момент времени скорость тела равна нулю?



ТАБЛИЦЫ

32. В таблице приведены результаты измерений пути при свободном падении стального шарика в разные моменты времени. Каково, ско­рее всего, было значение пути, пройденное шариком при падении, к моменту времени t = 2 с?

1) 7,5 м 2) 10 м 3) 20 м 4) 40 м

34. В таблице представлена зависимость координаты х движения тела от времени t :

С какой скоростью двигалось тело от момента времени 0 с до мо­мента времени 3 с?


4) 3 м/с


36. В таблице представлена зависимость координаты х движения тела от времени t :

С какой скоростью двигалось тело от момента времени 3 с до до момента времени 5 с?



38. В таблице представлена зависимость скорости движения тела v от времени t :


3) 17 м


40. В таблице представлена зависимость скорости движения тела v от времени t :

Определите путь, пройденный телом в интервале от момен­та времени 0 с до момента времени 2 с.



42. В таблице представлена зависимость скорости движения тела v от времени t :

t, с
v, м/с

Определите путь, пройденный телом в интервале от момен­та времени 0 с до момента времени 5 с.


4) 25 м


43. Четыре тела двигались по оси Ох. В таблице представлена зависимость их координат от времени.

t, с
x 1 м -2 -4
х 2 , м
х 3 , м
х 4 , м -2

У какого из тел скорость могла быть постоянна и отлична от нуля?


1) 1 2) 2 3) 3 4) 4

44. Четыре тела двигались по оси Ох. В таблице представлена зависимость их координат от времени.

t, с
x 1 м -2 -4
х 2 , м
х 3 , м
х 4 , м -2

У какого из тел ускорение могло быть постоянно и отлично от нуля?