Строение электронных оболочек атомов ca. Тема урока «Строение электронных оболочек атомов»

8 класс

Тема урока

«Строение электронных оболочек атомов».

Цель урока:

    Рассмотрение модели строения атома.

    Введение понятия «электронное облако», «электронная орбиталь» , «движение без траектории».

    Рассмотрение модели энергетических состояний атома.

Задачи урока :

Образовательные: формирование представления об электронной оболочке атома и энергетических уровнях, рассмотрение электронного строения некоторых элементов, развитие умений по составлению электронных формул атомов, определению элементов по их электронным формулам, определение состава атома.

Воспитательные : рассмотрение значимости работы русского химика Д.И.Менделеева ;

Развивающие: формирование умений работать с периодической системой, логически мыслить и оформлять результаты логических операций, проводить параллели между химическими понятиями, изучаемыми в теме.

Ход урока

    Организационные моменты.

Доброе утро, ребята, уважаемые гости! Меня зовут Ирина Александровна Губская, я– учитель химии, представляю Раменский муниципальный район, Удельнинскую гимназию.

Нам сегодня вместе предстоит продолжить постигать тайны и загадки, которыми полна наука «химия».Вы только в этом году начали изучать этот удивительно интересный, но вместе с тем сложный предмет, но наверняка многое уже знаете.

Тема нашего урока «Строение электронных оболочек атомов» (запишем в тетрадях).

Ребята, вам хочется увидеть атомы, электроны?...Можно ли это сделать?...

Можно….в воображении. Умозрительно. Мы многое видим умозрительно, почему бы не увидеть атом или электрон? Давайте попробуем. Итак, в путь!

Наша общая задача на уроке – продолжить изучение темы «Атомы химических элементов», нам предстоит актуализировать знания о строении атома и познакомиться со строением электронных оболочек атомов.

2. Объяснение нового материала

Поэт В.Брюсов в 1922 году под впечатлением от удивительных открытий физиков написал:

Быть может, эти электроны-

Миры, где пять материков,

Искусства, знанья, войны, троны

И память сорока веков!

Еще, быть может, каждый атом-

Вселенная, где сто планет;

Там – все, что здесь, в объеме сжатом,

Но также то, чего здесь нет.

? Как вы понимаете эти строки?

Может быть… Сходство электронов и атомов с астрономическими объектами пока не подтвердилось, но того, «чего здесь нет», оказалось более чем достаточно, и об этом вы будете узнавать на уроках химии и физики.

Науке потребовалось более 2000 лет, чтобы определить, на что он похож. И даже сейчас он все еще остается для нас загадкой.

Предлагаю вам заполнить анкету от имени атома.

Анкета.

1. Имя Атом

2. Место обитания любое тело в газообразном, жидком, твердом агрегатном состоянии

3. Поразительные

качества невероятная малость

4. Строение атома

? А из чего состоит атом? (схема)

Атом состоит из положительно заряженного ядра и движущихся вокруг него электронов

? А из чего состоит ядро атома?

Из протонов и нейтронов

А движущиеся вокруг ядра электроны образуют электронную оболочку

В начале ХХ в. была принята планетарная модель строения атома , согласно которой вокруг ядра движутся электроны, как планеты вокруг солнца. Следовательно, в атоме есть траектории, по которым движется электрон. Однако дальнейшие исследования показали, что в атоме не существует траекторий движения электронов. Движение без траектории означает, что мы не знаем, как электрон движется в атоме, но можем установить область, где чаще всего встречается электрон. Это уже не орбита, а орбиталь.

Двигаясь вокруг атома, электроны образуют в совокупности его электронную оболочку .

Совокупность всех электронов, окружающих ядро, называется электронной оболочкой (записываем определение)

? Давайте выясним, как движутся электроны вокруг ядра?

? Беспорядочно или в определенном порядке? Оказывается, движение электронов происходит в определенном порядке.

Электроны в атоме различаются определенной энергией, и, как показывают опыты, одни притягиваются к ядру сильнее, другие слабее. Объясняется это удаленностью электронов от ядра. Чем ближе электроны к ядру, тем больше связь их с ядром, но меньше запас энергии. По мере удаления от ядра атома сила притяжения электрона к ядру уменьшается, а запас энергии увеличивается. Каждый электрон в зависимости от своей энергии будет находиться на определенном расстоянии от ядра. Так образуются электронные слои в электронной оболочке атома.

Каждый слой состоит из электронов с близкими значениями энергии, поэтому слои электронов называют энергетическими уровнями .

Электронный слой, состоящий из электронов с близкими значениями энергии, называется энергетическим уровнем . (записываем определение)

? А как же определить, сколько слоев (энергетических уровней) в атоме того или иного элемента?

- Число уровней определяется номером периода, в котором располагается элемент.

Например:

У Na -2 энергетических уровня, т.к. он находиться во 2 периоде

У N – 3, 3 период

У Fe – 4 , 4 период

? А сколько электронов может находиться на каждом энергетическом уровне?

Максимальное число электронов, которое может находиться на том или ином энергетическом уровне, определяется по формуле

N = 2n 2

Где N - максимальное число электронов на уровне;

n – номер энергетического уровня.

Например:

1 энергетический уровень, n =1, N =2

n =2, N=8

Каждый уровень вмещает не больше рассчитанного количества электронов.

Если электронный слой содержит максимально возможное число электронов, то его называют завершенным . Электронные слои, не содержащие максимального числа электронов, называют незавершенными .

Как ранее было сказано, электрон движется не по орбите, а по орбитали и не имеет траектории.

Пространство вокруг ядра, где наиболее вероятно нахождение данного электрона, называется орбиталью этого электрона, или электронным облаком.

(записываем определение)

Орбитали, или подуровни , как их еще называют, могут иметь разную форму, и их количество соответствует номеру уровня, но не превышает четырех. Первый энергетический уровень имеет один подуровень (s ), второй- два (s , p ), третий – три (s , p , d ) и т.д. Электроны, находящиеся на одном энергетическом уровне тоже отличаются друг от друга.

Электроны разных подуровней одного и того же уровня имеют разную форму

электронного облака: сферическую (s ), гантелеобразную (p ) и более сложную конфигурацию.

S - орбиталь - это просто шарик. Путь электрона по ней напоминает путь нитки, которую наматывают на клубок. С нее начинается каждый уровень.

P – орбиталь похожа на объемную восьмерку или перекрученную сосиску, и вместе перекрутки расположено ядро. Таких орбиталей на каждом энергетическом уровне -3, они располагаются под углом 90 – как оси координат.

D - орбиталь – это две p-орбитали, соединенные центрами – как объемная четырехлепестковая ромашка, их на подуровне может быть 5.

F – орбиталь имеет более сложную форму, ее трудно описать словами.

Представьте путь своей мысли при решении системы уравнений с 3 неизвестными – это примерно такой же сложности.

Каждая орбиталь вмещает максимум 2 электрона с противоположными спинами.

Спин - это условное направление движения электрона вокруг своей оси – оно может быть либо по часовой стрелке, либо против. Только электроны с разными спинами уживаются на одной орбитали, т.к. отталкивание их из-за одноименных зарядов частично гасится.

Составим схему последовательного заполнения электронами энергетических уровней.

2 ē 8 ē 18 ē

n=1 n=2 n=3

s s p s p d

2ē 2ē 6ē 2ē 6ē 8ē

Теперь мы можем составить схему строения электронных оболочек атомов:

    Определяем общее число электронов на оболочке по порядковому номеру элемента.

    Определяем число энергетических уровней в электронной оболочке. Их число равно номеру периода в таблице Д. И. Менделеева, в котором находится элемент.

    Определяем число электронов на каждом энергетическом уровне.

    Используя для обозначения уровня арабские цифры и обозначая орбитали буквами s и p , а число электронов данной орбитали арабской цифрой вверху справа над буквой, изображаем строение атомов более полными электронными формулами.

Пример:

Ядро атома водорода имеет заряд +1, поэтому вокруг его ядра движется только один электрон на единственном энергетическом уровне. Запишем электронную конфигурацию атома водорода

Элемент № 3- литий. Ядро лития имеет заряд +3,следовательно, в атоме лития три электрона. Два из них находятся на первом энергетическом уровне, а третий электрон начинает заполнять второй энергетический уровень. Сначала заполняется s -орбиталь первого уровня, потом s -орбиталь второго уровня.

Свойства элементов изменяются периодически. У всех атомов семейств элементов (щелочные металлы, галогены, благородные газы) на внешнем энергетическом уровне одинаковое число электронов.

У щелочных металлов – 1 электрон

У галогенов – 7 электронов

У благородных газов – внешний уровень их атомов завершен, 8 электронов

Вывод: свойства химических элементов периодически (через определенные промежутки – периоды) повторяются потому, что периодически повторяется одинаковое строение внешних энергетических уровней их атомов.

3. Закрепление

Вариант 1

    Заряд ядра атома АЗОТА равен

а)7 б)13 в)4 г)26 д)11

    Число протонов в ядре атома КРИПТОНА равно

а)36 б)17 в)4 г)31 д)6

3 .Число нейтронов в ядре атома ЦИНКА равно

а)8 б)35 в)11 г)30 д)4

4 .Число электронов в атоме ЖЕЛЕЗА равно

а)11 б)8 в)56 г)26 д)30

Вариант 2

    Максимальное число электронов на 4 энергетическом уровне

а) 32 б)36 в)16 г)24

    Число электронных уровней у атома кальция равно

а)1 б)2 в)3 г)4

3.Число электронов на внешнем уровне атома БРОМА равно

а) 7 б) 6 в)5 г)4

4.Общее число s -электронов у атома ЛИТИЯ равно

а) 1 б)2 в)3 г)4

    Электронная формула внешнего уровня 2s2 2p 6 соответствует атому

а) кислорода б) серы

в) фтора г) неона

Подведение итогов. Рефлексия .

Домашнее задание : записи в тетради, 8, упр. по карточкам

Домашнее задание:

1. Изобразите строение атомов следующих элементов:

1 вариант

фосфора

2 вариант

Магния

2 . Сравните строение атомов

1 вариант

бора и фтора

2 вариант

кислорода и серы

3 . По данным о распределении валентных электронов найдите элемент :

а) 2s 1

б) 2s 2 2p 4

в) 3s 2 3p 6

г) 3d 10 4s 1

д) 4s 2 4p 3

е) 4s 2 4p 5

ж) 3s 2 3p 4

Давайте подведем итоги урока.

? Что мы сегодня узнали нового?

    Электрон не имеет траектории и движение его происходит по орбитали.

    По схеме последовательного заполнения электронами энергетических уровней научились составлять электронные формулы элементов.

    Научились по электронным формулам определять химический элемент.

«Далеко лежит за пределами нашего чувства вся природа начал»

Тит Лукреций Кар

I в. до н.э.

В приведенных словах древнеримского поэта сконцентрирована вся трудность устройства атома.

Но мы его попытались описать,используя математические подходы и формулы.

У вас на столах находятся карточки для самооценки урока. Отметьте,пожалуйста, «+» или «-» свою самооценку. Я рада была с вами познакомиться. Молодцы, вы хорошо работали, хочется отметить, спасибо за сотрудничество. До свидания, урок окончен, успехов вам в изучении химии.

Выдающийся датский физик Нильс Бор (Рис. 1) предположил, что электроны в атоме могут двигаться не по любым, а по строго определенным орбитам.

Рис. 1. Бор Нильс Хендрих Давид (1885-1962)

При этом электроны в атоме различаются своей энергией. Как показывают опыты, одни из них притягиваются к ядру сильнее, другие - слабее. Главная причина этого заключается в разном удалении электронов от ядра атома. Чем ближе электроны к ядру, тем они прочнее связаны с ним и их труднее вырвать из электронной оболочки. Таким образом, по мере удаления от ядра атома запас энергии электрона увеличивается.

Электроны, движущиеся вблизи ядра, как бы загораживают (экранируют) ядро от других электронов, которые притягиваются к ядру слабее и движутся на большем удалении от него. Так образуются электронные слои.

Каждый электронный слой состоит из электронов с близкими значениями энергии; поэтому электронные слои называют еще энергетическими уровнями.

Ядро находится в центре атома каждого элемента, а электроны, образующие электронную оболочку, размещаются вокруг ядра слоями.

Число электронных слоев в атоме элемента равно номеру периода, в котором находится данный элемент.

Например, натрий Na - элемент 3-го периода, значит, его электронная оболочка включает 3 энергетических уровня. В атоме брома Br - 4 энергетических уровня, т. к. бром расположен в 4-м периоде (Рис. 2).

Модель атома натрия: Модель атома брома:

Максимальное число электронов на энергетическом уровне рассчитывается по формуле: 2n2, где n - номер энергетического уровня.

Таким образом, максимальное число электронов на:

3 слое - 18 и т. д.

У элементов главных подгрупп номер группы, к которой относится элемент, равен числу внешних электронов атома.

Внешними называют электроны последнего электронного слоя.

Например, в атоме натрия - 1 внешний электрон (т. к. это элемент IА подгруппы). В атоме брома - 7 электронов на последнем электронном слое (это элемент VIIА подгруппы).

Строение электронных оболочек элементов 1-3 периодов

В атоме водорода заряд ядра равен +1, и этот заряд нейтрализуется единственным электроном (Рис. 3).

Следующий за водородом элемент - гелий, тоже элемент 1-го периода. Следовательно, в атоме гелия 1 энергетический уровень, на котором размещаются два электрона (Рис. 4). Это максимально возможное число электронов для первого энергетического уровня.

Элемент № 3 - это литий. В атоме лития 2 электронных слоя, т. к. это элемент 2-го периода. На 1 слое в атоме лития находится 2 электрона (этот слой завершен), а на 2 слое -1 электрон. В атоме бериллия на 1 электрон больше, чем в атоме лития (Рис. 5).

Аналогично можно изобразить схемы строения атомов остальных элементов второго периода (Рис. 6).

В атоме последнего элемента второго периода - неона - последний энергетический уровень является завершенным (на нем 8 электронов, что соответствует максимальному значению для 2-го слоя). Неон - инертный газ, который не вступает в химические реакции, следовательно, его электронная оболочка очень устойчива.

Американский химик Гилберт Льюис дал объяснение этому и выдвинул правило октета, в соответствии с которым устойчивым является восьмиэлектронный слой (за исключением 1 слоя: т. к. на нем может находиться не более 2 электронов, устойчивым для него будет двухэлектронное состояние).

После неона следует элемент 3-го периода - натрий. В атоме натрия - 3 электронных слоя, на которых расположены 11 электронов (Рис. 7).

Рис. 7. Схема строения атома натрия

Натрий находится в 1 группе, его валентность в соединениях равна I, как и у лития. Это связано с тем, что на внешнем электронном слое атомов натрия и лития находится 1 электрон.

Свойства элементов периодически повторяются потому, что у атомов элементов периодически повторяется число электронов на внешнем электронном слое.

Строение атомов остальных элементов третьего периода можно представить по аналогии со строением атомов элементов 2-го периода.

Строение электронных оболочек элементов 4 периода

Четвертый период включает в себя 18 элементов, среди них есть элементы как главной (А), так и побочной (В) подгрупп. Особенностью строения атомов элементов побочных подгрупп является то, что у них последовательно заполняются предвнешние (внутренние), а не внешние электронные слои.

Четвертый период начинается с калия. Калий - щелочной металл, проявляющий в соединениях валентность I. Это вполне согласуется со следующим строением его атома. Как элемент 4-го периода, атом калия имеет 4 электронных слоя. На последнем (четвертом) электронном слое калия находится 1 электрон, общее количество электронов в атоме калия равно 19 (порядковому номеру этого элемента) (Рис. 8).

Рис. 8. Схема строения атома калия

За калием следует кальций. У атома кальция на внешнем электронном слое будут располагаться 2 электрона, как и у бериллия с магнием (они тоже являются элементами II А подгруппы).

Следующий за кальцием элемент - скандий. Это элемент побочной (В) подгруппы. Все элементы побочных подгрупп - это металлы. Особенностью строения их атомов является наличие не более 2-х электронов на последнем электронном слое, т. е. последовательно заполняться электронами будет предпоследний электронный слой.

Так, для скандия можно представить следующую модель строения атома (Рис. 9):

Рис. 9. Схема строения атома скандия

Такое распределение электронов возможно, т. к. на третьем слое максимально допустимое количество электронов - 18, т. е. восемь электронов на 3-м слое - это устойчивое, но не завершенное состояние слоя.

У десяти элементов побочных подгрупп 4-го периода от скандия до цинка последовательно заполняется третий электронный слой.

Схему строения атома цинка можно представить так: на внешнем электронном слое - два электрона, на предвнешнем - 18 (Рис. 10).

Рис. 10. Схема строения атома цинка

Следующие за цинком элементы относятся к элементам главной подгруппы: галлий, германий и т. д. до криптона. В атомах этих элементов последовательно заполняется 4-й (т. е. внешний) электронный слой. В атоме инертного газа криптона будет октет на внешней оболочке, т. е. устойчивое состояние.

Подведение итога урока

На этом уроке вы узнали, как устроена электронная оболочка атома и как объяснить явление периодичности. Познакомились с моделями строения электронных оболочек атомов, с помощью которых можно предсказать и объяснить свойства химических элементов и их соединений.

Источники

http://www.youtube.com/watch?t=7&v=xgPDyORYV_Q

http://www.youtube.com/watch?t=416&v=BBmhmB4ans4

http://www.youtube.com/watch?t=10&v=6Y19QgS5V5E

http://www.youtube.com/watch?t=3&v=B6XEB6_gbdI

источник презентации - http://www.myshared.ru/slide/834600/#

Конспект http://interneturok.ru/ru/school/chemistry/8-klass

Лекция: Строение электронных оболочек атомов элементов первых четырех периодов: s-, p- и d-элементы


Строение атома

XX столетие является временем изобретения "модели строения атома". Исходя из предоставленного строения, удалось выработать следующую гипотезу: вокруг достаточно маленького по объему и размеру ядра, электроны совершают перемещения, схожие с перемещением планет вокруг Солнца. Последующее изучение атома показало, что сам атом и его строение гораздо сложнее, чем было установлено раньше. И в настоящее время, при огромных возможностях в научной сфере, атом исследован не до конца. Такие составляющие, как атом и молекулы, считаются предметами микромира. Поэтому данные части человек не способен рассмотреть самостоятельно. В этом мире установлены совершенно иные законы и правила, отличающиеся от макромира. Исходя из этого, исследование атома ведется на его модели.

Любому атому присвоен порядковый номер, закрепленный в Периодической таблице Менделеева Д.И. К примеру, порядковый номер атома фосфора (Р) - 15.


Итак, атом состоит из протонов (p + ) , нейтронов (n 0 ) и электронов (e - ). Протоны и нейтроны образуют ядро атома, оно имеет положительный заряд. А электроны, совершающие перемещения вокруг ядра, «конструируют» электронную оболочку атома, имеющую отрицательный заряд.

Сколько электронов в атоме? Это легко узнать. Достаточно посмотреть порядковый номер элемента в таблице.

Так, число электронов фосфора равно 15 . Количество электронов, содержащихся в оболочке атома, строго равно числу протонов, содержащихся в ядре. Значит и протонов в ядре атома фосфора 15 .

Масса протонов и нейтронов, составляющих массу ядра атома, одинакова. А электроны меньше в 2000 раз. Это означает что вся масса атома сосредоточена в ядре, массой электронов пренебрегают. Массу ядра атома мы также можем узнать из таблицы. Посмотрите изображение фосфора в таблице. Внизу мы видим обозначение 30, 974 – это и есть масса ядра фосфора, его атомная масса. При записи мы округляем эту цифру. Исходя из сказанного, запишем строение атома фосфора следующим образом:

(внизу слева написали заряд ядра – 15, вверху слева округленное значение массы атома – 31).

Ядро атома фосфора:


(внизу слева пишем заряд: протоны имеют заряд равный +1, а нейтроны не заряжены, то есть заряд 0; вверху слева масса протона и нейтрона, равная 1 – условная единица массы атома; заряд ядра атома равен числу протонов в ядре, значит р=15, а число нейтронов нужно посчитать: из атомной массы вычесть заряд, т.е. 31 – 15 = 16).

Электронная оболочка атома фосфора включает в себя 15 отрицательно заряженных электронов, уравновешивающих положительно заряженные протоны. Поэтому, атом – электронейтральная частица.


Энергетические уровни


Рис.1

Далее нам необходимо подробно разобрать как распределяются электроны в атоме. Их движение не хаотично, а подчинено конкретному порядку. Какие - то из имеющихся электронов, притягиваются к ядру с достаточно большой силой, а другие наоборот, притягиваются слабо. Первопричина такого поведения электронов скрывается в разной степени удаленности электронов от ядра. То есть, ближе находящийся к ядру электрон, станет прочнее с ним взаимосвязан. Эти электроны просто нельзя отсоединить от электронной оболочки. Чем электрон дальше от ядра, тем проще «вытащить» его из оболочки. Так же, запас энергии электрона возрастает, по мере удаления от ядра атома. Энергия электрона определяется главным квантовым числом n, равняющимся любому натуральному числу (1,2,3,4…). Электроны, имеющие одинаковое значение n, образуют один электронный слой, как бы отгораживаясь от иных электронов, передвигающихся на удаленном расстоянии. На рисунке 1 изображены электронные слои, содержащиеся в электронной оболочке, в центре ядро атома.


Вы можете заметить, как по мере удаления от ядра увеличивается объем слоя. Следовательно, чем дальше слой от ядра, тем больше в нем электронов.

Электронный слой, содержит в себе электроны, сходные по показателям энергии. Из – за этого, такие слои нередко именуют энергетическими уровнями. Сколько же уровней может содержать атом? Количество энергетических уровней равно номеру периода в таблице Менделеева Д.И. в котором находится элемент. К примеру, фосфор (Р) находится в третьем периоде, значит атом фосфора имеет три энергетических уровня.

Рис. 2

Как узнать максимальное количество электронов, располагающихся на одном электронном слое? Для этого используем формулу N max = 2n 2 , где n – это номер уровня.

Получим, что первый уровень содержит всего 2 электрона, второй – 8, третий – 18, четвертый – 32.

Каждый энергетический уровень содержит в себе подуровни. Их буквенные обозначения: s-, p-, d- и f- . Посмотрите на рис. 2:

Разным цветом обозначены энергетические уровни, а полосками разной толщины подуровни.

Самый тонкий подуровень обозначается буквой s . 1s – это s-подуровень первого уровня, 2s – это s-подуровень второго уровня и так далее.

На втором энергетическом уровне появился p-подуровень, на третьем – d-подуровень, а на четвертом f-подуровень.

Запомните увиденную закономерность: первый энергетический уровень включает одну s-подуровень, второй два s- и p- подуровня, третий три s-, p- и d-подуровня, а четвертый уровень четыре s-, p-, d- и f-подуровня.

На s-подуровне могут находится только 2 электрона, на p-подуровне- максимум 6 электронов, на d-подуровне - 10 электронов, а на f-подуровне до 14 электронов.


Электронные орбитали

Область (место) где может находится электрон называется электронным облаком или орбиталью. Имейте ввиду, что говорится о вероятной области нахождении электрона, поскольку скорость его движения в сотни тысяч раз больше скорости движения иглы швейной машинки. Графически эта область изображается в виде ячейки:

В одной ячейке может находится два электрона. Судя по рисунку 2 можно сделать вывод о том, что s-подуровень, включающий не более двух электронов может содержать только одну s-орбиталь, обозначается одной ячейкой; p-подуровень имеет три р-орбитали (3 ячейки), d-подуровень пять d-орбиталей (5 ячеек), а f-подуровень семь f-орбиталей (7 ячеек).

Форма орбитали зависит от орбитального квантового числа (l - эль) атома. Атомный энергетический уровень, берет начало с s – орбитали, имеющей l = 0. Представленная орбиталь имеет сферическую форму. На уровнях, идущих после s - орбитали, образуются p – орбитали с l = 1. P - орбитали напоминают форму гантели. Орбиталей, имеющих данную форму, всего три. Каждая возможная орбиталь содержит в себе не больше 2 – ух электронов. Далее располагаются более сложного строения d -орбитали (l = 2), а за ними f -орбитали (l = 3).

Рис. 3 Форма орбиталей

Электроны в орбиталях изображаются в виде стрелочек. Если орбитали содержат по одному электрону, то они однонаправленны – стрелкой вверх:

Если же в орбитали два электрона, то они имеют два направления: стрелкой вверх и стрелкой вниз, т.е. электроны разнонаправленны:

Такое строение электронов называется валентным.

Существуют три условия наполнения атомных орбиталей электронами:

    1 условие: Принцип минимального количества энергии. Заполнение орбиталей начинается с подуровня, имеющего минимальную энергию. Согласно данному принципу подуровни заполняются в таком порядке: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 10 5р 6 6s 2 5d 1 4f 14 ... Как мы видим, в некоторых случаях электрону энергетически выгоднее занять место в подуровне вышележащего уровня, хотя подуровень нижележащего уровня не заполнен. Например, валентная конфигурация атома фосфора выглядит так:

Рис. 4


    2 условие: Принцип Паули. Одна орбиталь включает 2 электрона (электронную пару) и не больше. Но возможно и содержание всего одного электрона. Его именуют неспаренным.

    3 условие: Правило Хунда. Каждую орбиталь одного подуровня сначала заполняют по одному электрону, затем в них добавляются по второму электрону. В жизни мы видели аналогичную ситуацию, когда незнакомые пассажиры автобуса сначала занимают по одному все свободные сидения, а потом рассаживаются по два.

Электронная конфигурация атома в основном и возбужденном состоянии


Энергия атома, находящегося в основном состоянии, наименьшая. Если атомы начинают получать энергию из вне, к примеру, когда вещество нагревается, то они из основного состояния переходят в возбужденное. Этот переход возможен при наличии свободных орбиталей, на которые могут переместиться электроны. Но это временно, отдавая энергию, возбужденный атом возвращается в своё основное состояние.

Закрепим полученные знания на примере. Рассмотрим электронную конфигурацию, т.е. сосредоточение электронов по орбиталям атома фосфора в основном (невозбужденном состоянии). Еще раз обратимся к рис. 4. Итак, вспомним, что атом фосфора имеет три энергетических уровня, которые изображаются полудугами: +15)))

Распределим, имеющиеся 15 электронов на эти три энергетических уровня:


Такие формулы называются электронными конфигурациями. Есть еще электронно – графические, они иллюстрируют размещение электронов внутри энергетических уровней. Электронно – графическая конфигурация фосфора выглядит так: 1s 2 2s 2 2p 6 3s 2 3p 3 (здесь большие цифры – это номера энергетических уровней, буквы – это подуровни, а маленькие цифры – количество электронов подуровня, если их сложить, получится число 15).

В возбужденном состоянии атома фосфора 1 электрон переходит с 3s-орбитали на 3d-орбиталь, а конфигурация выглядит так: 1s 2 2s 2 2p 6 3s 1 3p 3 3d 1 .


Выдающийся датский физик Нильс Бор (Рис. 1) предположил, что электроны в атоме могут двигаться не по любым, а по строго определенным орбитам.

Рис. 1. Бор Нильс Хендрих Давид (1885-1962)

При этом электроны в атоме различаются своей энергией. Как показывают опыты, одни из них притягиваются к ядру сильнее, другие - слабее. Главная причина этого заключается в разном удалении электронов от ядра атома. Чем ближе электроны к ядру, тем они прочнее связаны с ним и их труднее вырвать из электронной оболочки. Таким образом, по мере удаления от ядра атома запас энергии электрона увеличивается.

Электроны, движущиеся вблизи ядра, как бы загораживают (экранируют) ядро от других электронов, которые притягиваются к ядру слабее и движутся на большем удалении от него. Так образуются электронные слои.

Каждый электронный слой состоит из электронов с близкими значениями энергии; поэтому электронные слои называют еще энергетическими уровнями.

Ядро находится в центре атома каждого элемента, а электроны, образующие электронную оболочку, размещаются вокруг ядра слоями.

Число электронных слоев в атоме элемента равно номеру периода, в котором находится данный элемент.

Например, натрий Na - элемент 3-го периода, значит, его электронная оболочка включает 3 энергетических уровня. В атоме брома Br - 4 энергетических уровня, т. к. бром расположен в 4-м периоде (Рис. 2).

Модель атома натрия: Модель атома брома:

Максимальное число электронов на энергетическом уровне рассчитывается по формуле: 2n2, где n - номер энергетического уровня.

Таким образом, максимальное число электронов на:

3 слое - 18 и т. д.

У элементов главных подгрупп номер группы, к которой относится элемент, равен числу внешних электронов атома.

Внешними называют электроны последнего электронного слоя.

Например, в атоме натрия - 1 внешний электрон (т. к. это элемент IА подгруппы). В атоме брома - 7 электронов на последнем электронном слое (это элемент VIIА подгруппы).

Строение электронных оболочек элементов 1-3 периодов

В атоме водорода заряд ядра равен +1, и этот заряд нейтрализуется единственным электроном (Рис. 3).

Следующий за водородом элемент - гелий, тоже элемент 1-го периода. Следовательно, в атоме гелия 1 энергетический уровень, на котором размещаются два электрона (Рис. 4). Это максимально возможное число электронов для первого энергетического уровня.

Элемент № 3 - это литий. В атоме лития 2 электронных слоя, т. к. это элемент 2-го периода. На 1 слое в атоме лития находится 2 электрона (этот слой завершен), а на 2 слое -1 электрон. В атоме бериллия на 1 электрон больше, чем в атоме лития (Рис. 5).

Аналогично можно изобразить схемы строения атомов остальных элементов второго периода (Рис. 6).

В атоме последнего элемента второго периода - неона - последний энергетический уровень является завершенным (на нем 8 электронов, что соответствует максимальному значению для 2-го слоя). Неон - инертный газ, который не вступает в химические реакции, следовательно, его электронная оболочка очень устойчива.

Американский химик Гилберт Льюис дал объяснение этому и выдвинул правило октета, в соответствии с которым устойчивым является восьмиэлектронный слой (за исключением 1 слоя: т. к. на нем может находиться не более 2 электронов, устойчивым для него будет двухэлектронное состояние).

После неона следует элемент 3-го периода - натрий. В атоме натрия - 3 электронных слоя, на которых расположены 11 электронов (Рис. 7).

Рис. 7. Схема строения атома натрия

Натрий находится в 1 группе, его валентность в соединениях равна I, как и у лития. Это связано с тем, что на внешнем электронном слое атомов натрия и лития находится 1 электрон.

Свойства элементов периодически повторяются потому, что у атомов элементов периодически повторяется число электронов на внешнем электронном слое.

Строение атомов остальных элементов третьего периода можно представить по аналогии со строением атомов элементов 2-го периода.

Строение электронных оболочек элементов 4 периода

Четвертый период включает в себя 18 элементов, среди них есть элементы как главной (А), так и побочной (В) подгрупп. Особенностью строения атомов элементов побочных подгрупп является то, что у них последовательно заполняются предвнешние (внутренние), а не внешние электронные слои.

Четвертый период начинается с калия. Калий - щелочной металл, проявляющий в соединениях валентность I. Это вполне согласуется со следующим строением его атома. Как элемент 4-го периода, атом калия имеет 4 электронных слоя. На последнем (четвертом) электронном слое калия находится 1 электрон, общее количество электронов в атоме калия равно 19 (порядковому номеру этого элемента) (Рис. 8).

Рис. 8. Схема строения атома калия

За калием следует кальций. У атома кальция на внешнем электронном слое будут располагаться 2 электрона, как и у бериллия с магнием (они тоже являются элементами II А подгруппы).

Следующий за кальцием элемент - скандий. Это элемент побочной (В) подгруппы. Все элементы побочных подгрупп - это металлы. Особенностью строения их атомов является наличие не более 2-х электронов на последнем электронном слое, т. е. последовательно заполняться электронами будет предпоследний электронный слой.

Так, для скандия можно представить следующую модель строения атома (Рис. 9):

Рис. 9. Схема строения атома скандия

Такое распределение электронов возможно, т. к. на третьем слое максимально допустимое количество электронов - 18, т. е. восемь электронов на 3-м слое - это устойчивое, но не завершенное состояние слоя.

У десяти элементов побочных подгрупп 4-го периода от скандия до цинка последовательно заполняется третий электронный слой.

Схему строения атома цинка можно представить так: на внешнем электронном слое - два электрона, на предвнешнем - 18 (Рис. 10).

Рис. 10. Схема строения атома цинка

Следующие за цинком элементы относятся к элементам главной подгруппы: галлий, германий и т. д. до криптона. В атомах этих элементов последовательно заполняется 4-й (т. е. внешний) электронный слой. В атоме инертного газа криптона будет октет на внешней оболочке, т. е. устойчивое состояние.

Подведение итога урока

На этом уроке вы узнали, как устроена электронная оболочка атома и как объяснить явление периодичности. Познакомились с моделями строения электронных оболочек атомов, с помощью которых можно предсказать и объяснить свойства химических элементов и их соединений.

Источники

http://www.youtube.com/watch?t=7&v=xgPDyORYV_Q

http://www.youtube.com/watch?t=416&v=BBmhmB4ans4

http://www.youtube.com/watch?t=10&v=6Y19QgS5V5E

http://www.youtube.com/watch?t=3&v=B6XEB6_gbdI

источник презентации - http://www.myshared.ru/slide/834600/#

Конспект http://interneturok.ru/ru/school/chemistry/8-klass

Выдающийся датский физик Нильс Бор (Рис. 1) предположил, что электроны в атоме могут двигаться не по любым, а по строго определенным орбитам.

При этом электроны в атоме различаются своей энергией. Как показывают опыты, одни из них притягиваются к ядру сильнее, другие - слабее. Главная причина этого заключается в разном удалении электронов от ядра атома. Чем ближе электроны к ядру, тем они прочнее связаны с ним и их труднее вырвать из электронной оболочки. Таким образом, по мере удаления от ядра атома запас энергии электрона увеличивается.

Электроны, движущиеся вблизи ядра, как бы загораживают (экранируют) ядро от других электронов, которые притягиваются к ядру слабее и движутся на большем удалении от него. Так образуются электронные слои.

Каждый электронный слой состоит из электронов с близкими значениями энергии; поэтому электронные слои называют еще энергетическими уровнями.

Ядро находится в центре атома каждого элемента, а электроны, образующие электронную оболочку, размещаются вокруг ядра слоями.

Число электронных слоев в атоме элемента равно номеру периода, в котором находится данный элемент.

Например, натрий Na - элемент 3-го периода, значит, его электронная оболочка включает 3 энергетических уровня. В атоме брома Br - 4 энергетических уровня, т. к. бром расположен в 4-м периоде (Рис. 2).

Модель атома натрия: Модель атома брома:

Максимальное число электронов на энергетическом уровне рассчитывается по формуле: 2n 2 , где n - номер энергетического уровня.

Таким образом, максимальное число электронов на:

3 слое - 18 и т. д.

У элементов главных подгрупп номер группы, к которой относится элемент, равен числу внешних электронов атома.

Внешними называют электроны последнего электронного слоя.

Например, в атоме натрия - 1 внешний электрон (т. к. это элемент IА подгруппы). В атоме брома - 7 электронов на последнем электронном слое (это элемент VIIА подгруппы).

Строение электронных оболочек элементов 1-3 периодов

В атоме водорода заряд ядра равен +1, и этот заряд нейтрализуется единственным электроном (Рис. 3).

Следующий за водородом элемент - гелий, тоже элемент 1-го периода. Следовательно, в атоме гелия 1 энергетический уровень, на котором размещаются два электрона (Рис. 4). Это максимально возможное число электронов для первого энергетического уровня.

Элемент № 3 - это литий. В атоме лития 2 электронных слоя, т. к. это элемент 2-го периода. На 1 слое в атоме лития находится 2 электрона (этот слой завершен), а на 2 слое -1 электрон. В атоме бериллия на 1 электрон больше, чем в атоме лития (Рис. 5).

Аналогично можно изобразить схемы строения атомов остальных элементов второго периода (Рис. 6).

В атоме последнего элемента второго периода - неона - последний энергетический уровень является завершенным (на нем 8 электронов, что соответствует максимальному значению для 2-го слоя). Неон - инертный газ, который не вступает в химические реакции, следовательно, его электронная оболочка очень устойчива.

Американский химик Гилберт Льюис дал объяснение этому и выдвинул правило октета, в соответствии с которым устойчивым является восьмиэлектронный слой (за исключением 1 слоя: т. к. на нем может находиться не более 2 электронов, устойчивым для него будет двухэлектронное состояние).

После неона следует элемент 3-го периода - натрий. В атоме натрия - 3 электронных слоя, на которых расположены 11 электронов (Рис. 7).

Рис. 7. Схема строения атома натрия

Натрий находится в 1 группе, его валентность в соединениях равна I, как и у лития. Это связано с тем, что на внешнем электронном слое атомов натрия и лития находится 1 электрон.

Свойства элементов периодически повторяются потому, что у атомов элементов периодически повторяется число электронов на внешнем электронном слое.

Строение атомов остальных элементов третьего периода можно представить по аналогии со строением атомов элементов 2-го периода.

Строение электронных оболочек элементов 4 периода

Четвертый период включает в себя 18 элементов, среди них есть элементы как главной (А), так и побочной (В) подгрупп. Особенностью строения атомов элементов побочных подгрупп является то, что у них последовательно заполняются предвнешние (внутренние), а не внешние электронные слои.

Четвертый период начинается с калия. Калий - щелочной металл, проявляющий в соединениях валентность I. Это вполне согласуется со следующим строением его атома. Как элемент 4-го периода, атом калия имеет 4 электронных слоя. На последнем (четвертом) электронном слое калия находится 1 электрон, общее количество электронов в атоме калия равно 19 (порядковому номеру этого элемента) (Рис. 8).

Рис. 8. Схема строения атома калия

За калием следует кальций. У атома кальция на внешнем электронном слое будут располагаться 2 электрона, как и у бериллия с магнием (они тоже являются элементами II А подгруппы).

Следующий за кальцием элемент - скандий. Это элемент побочной (В) подгруппы. Все элементы побочных подгрупп - это металлы. Особенностью строения их атомов является наличие не более 2-х электронов на последнем электронном слое, т. е. последовательно заполняться электронами будет предпоследний электронный слой.

Так, для скандия можно представить следующую модель строения атома (Рис. 9):

Рис. 9. Схема строения атома скандия

Такое распределение электронов возможно, т. к. на третьем слое максимально допустимое количество электронов - 18, т. е. восемь электронов на 3-м слое - это устойчивое, но не завершенное состояние слоя.

У десяти элементов побочных подгрупп 4-го периода от скандия до цинка последовательно заполняется третий электронный слой.

Схему строения атома цинка можно представить так: на внешнем электронном слое - два электрона, на предвнешнем - 18 (Рис. 10).

Рис. 10. Схема строения атома цинка

Следующие за цинком элементы относятся к элементам главной подгруппы: галлий, германий и т. д. до криптона. В атомах этих элементов последовательно заполняется 4-й (т. е. внешний) электронный слой. В атоме инертного газа криптона будет октет на внешней оболочке, т. е. устойчивое состояние.

Подведение итога урока

На этом уроке вы узнали, как устроена электронная оболочка атома и как объяснить явление периодичности. Познакомились с моделями строения электронных оболочек атомов, с помощью которых можно предсказать и объяснить свойства химических элементов и их соединений.

Список литературы

  1. Оржековский П.А. Химия: 8-й класс: учеб для общеобр. учрежд. / П.А. Оржековский, Л.М. Мещерякова, М.М. Шалашова. - М.: Астрель, 2013. (§44)
  2. Рудзитис Г.Е. Химия: неорган. химия. Орган. химия: учеб. для 9 кл. / Г.Е. Рудзитис, Ф.Г. Фельдман. - М.: Просвещение, ОАО «Московские учебники», 2009. (§37)
  3. Хомченко И.Д. Сборник задач и упражнений по химии для средней школы. - М.: РИА «Новая волна»: Издатель Умеренков, 2008. (с. 37-38)
  4. Энциклопедия для детей. Том 17. Химия / Глав. ред. В.А. Володин, вед. науч. ред. И. Леенсон. - М.: Аванта+, 2003. (с. 38-41)
  1. Chem.msu.su ().
  2. Dic.academic.ru ().
  3. Krugosvet.ru ().

Домашнее задание

  1. с. 250 №№ 2-4 из учебника П.А. Оржековского «Химия: 8-й класс» / П.А. Оржековский, Л.М. Мещерякова, М.М. Шалашова. - М.: Астрель, 2013.
  2. Запишите распределение электронов по слоям в атоме аргона и криптона. Объясните, почему атомы этих элементов с большим трудом вступают в химическое взаимодействие.