Магнитный момент системы. Kvant

Известно, что магнитное поле оказывает ориентирующее действие на рамку с током, и рамка поворачивается вокруг своей оси. Происходит это потому, что в магнитном поле на рамку действует момент сил, равный:

М = I S |B → | sin α.

Здесь B → - вектор индукции магнитного поля, I - ток в рамке, S - ее площадь и α - угол между силовыми линиями и перпендикуляром к плоскости рамки. В это выражение входит произведение I S которое называют магнитным дипольным моментом или просто магнитным моментом рамки Оказывается, величина магнитного момента полностью характеризует взаимодействие рамки с магнитным полем. Две рамки, у одной из которых большой ток и малая площадь, а у другой - большая площадь и малый ток, будут вести себя в магнитном поле одинаково, если их магнитные моменты равны. Если рамка маленькая, то ее взаимодействие с магнитным полем не зависит от ее формы.

Удобно считать магнитный момент вектором, который расположен на линии, перпендикулярной плоскости рамки. Направление вектора (вверх или вниз вдоль этой линии) определяется «правилом буравчика»: буравчик нужно расположить перпендикулярно плоскости рамки и вращать по направлению тока рамки - направление движения буравчика укажет направление вектора магнитного момента.

Таким образом, магнитный момент - это вектор I S, перпендикулярный плоскости рамки.

Теперь наглядно представим поведение рамки в магнитном поле. Она будет стремиться развернуться так. чтобы ее магнитный момент был направлен вдоль вектора индукции магнитного поля B →

Магнитный момент - важное понятие в физике. В состав атомов входят ядра, вокруг которых вращаются электроны. Каждый движущийся вокруг ядра электрон как заряженная частица создает ток, образуя как бы микроскопическую рамку с током. Вычислим магнитный момент одного электрона, движущегося по круговой орбите радиуса r.

Электрический ток, т. е. величина заряда, которая переносится электроном на орбите за 1 с, равна заряду электрона е, помноженному на число совершаемых им оборотов v/2πr:

Следовательно, величина магнитного момента электрона равна:

μ = I S=ev/(2πr) (πr 2) = evr/2.

μ можно выразить через величину момента импульса электрона L=m v r. Тогда величина магнитного момента электрона, связанная с его движением по орбите, или, как говорят, величина орбитального магнитного момента, равна:

Атом - это объект, который нельзя описать с помощью классической физики: для таких малых объектов действуют совершенно иные законы - законы квантовой механики. Тем не менее результат, полученный для орбитального магнитного момента электрона, оказывается таким же, как и в квантовой механике. Иначе дело обстоит с собственным магнитным моментом электрона - спином, который связан с его вращением вокруг своей оси. Для спина электрона квантовая механика дает величину магнитного момента, в 2 раза большую, чем классическая физика:

и это различие между орбитальным и спиновым магнитными моментами невозможно объяснить с классической точки зрения. Полный магнитный момент атома складывается из орбитальных и спиновых магнитных моментов всех электронов, а поскольку они отличаются в 2 раза, то в выражении для магнитного момента атома появляется множитель g(1

Таким образом, атом, как и обычная рамка с током, обладает магнитным моментом, и во многом их поведение сходно. В частности, как и в случае классической рамки, поведение атома в магнитном поле полностью определяется величиной его магнитного момента. В связи с этим понятие магнитного момента очень важно при объяснении различных физических явлений, происходящих с веществом в магнитном поле.

Кикоин А.К. Магнитный момент тока //Квант. - 1986. - № 3. - С. 22-23.

По специальной договоренности с редколлегией и редакцией журнала "Квант"

Из курса физики девятого класса («Физика 9», § 88) известно, что на прямолинейный проводник длиной l с током I , если он помещен в однородное магнитное поле с индукцией \(~\vec B\), действует сила \(~\vec F\), равная по модулю

\(~F = BIl \sin \alpha\) ,

где α - угол между направлением тока и вектором магнитной индукции. Направлена эта сила перпендикулярно и полю, и току (по правилу левой руки).

Прямолинейный проводник - это только часть электрической цепи, поскольку электрический ток всегда замкнут. А как магнитное поле действует на замкнутый ток, точнее - на замкнутый контур с током?

На рисунке 1 в качестве примера показан контур в форме прямоугольной рамки со сторонами a и b , по которой в указанном стрелками направлении течет ток I .

Рамка помещена в однородное магнитное поле с индукцией \(~\vec B\) так, что в начальный момент вектор \(~\vec B\) лежит в плоскости рамки и параллелен двум ее сторонам. Рассматривая каждую из сторон рамки по отдельности, мы найдем, что на боковые стороны (длиной а ) действуют силы, равные по модулю F = BIa и направленные в противоположные стороны. На две другие стороны силы не действуют (для них sin α = 0). Каждая из сил F относительно оси, проходящей через середины верхней и нижней сторон рамки, создает момент силы (вращающий момент), равный \(~\frac{BIab}{2}\) (\(~\frac{b}{2}\) - плечо силы). Знаки моментов одинаковы (обе силы поворачивают рамку в одну сторону), так что общий вращающий момент М равен BIab , или, поскольку произведение ab равно площади S рамки,

\(~M = BIab = BIS\) .

Под действием этого момента рамка начнет поворачиваться (если смотреть сверху, то по часовой стрелке) и будет поворачиваться до тех пор, пока не станет своей плоскостью перпендикулярно вектору индукции \(~\vec B\) (рис. 2).

В этом положении сумма сил и сумма моментов сил равны нулю, и рамка находится в состоянии устойчивого равновесия. (На самом деле рамка остановится не сразу - в течение некоторого времени она будет совершать колебания около своего положения равновесия.)

Нетрудно показать (сделайте это самостоятельно), что в любом промежуточном положении, когда нормаль к плоскости контура составляет произвольный угол β с индукцией магнитного поля, вращающий момент равен

\(~M = BIS \sin \beta\) .

Из этого выражения видно, что при данном значении индукции поля и при определенном положении контура с током вращающий момент зависит только от произведения площади контура S на силу тока I в нем. Величину IS и называют магнитным моментом контура с током. Говоря точнее, IS - это модуль вектора магнитного момента. А направлен этот вектор перпендикулярно плоскости контура и притом так, что если мысленно вращать буравчик в направлении тока в контуре, то направление поступательного движения буравчика укажет направление магнитного момента. Например, магнитный момент контура, показанного на рисунках 1 и 2, направлен от нас за плоскость страницы. Измеряется магнитный момент в А·м 2 .

Теперь мы можем сказать, что контур с током в однородном магнитном поле устанавливается так, чтобы его магнитный момент «смотрел» в сторону того поля, которое вызвало его поворот.

Известно, что не только контуры с током обладают свойством создавать собственное магнитное поле и поворачиваться во внешнем поле. Такие же свойства наблюдаются и у намагниченного стержня, например у стрелки компаса.

Еще в 1820 году замечательный французский физик Ампер высказал идею о том, что сходство поведения магнита и контура с током объясняется тем, что в частицах магнита существуют замкнутые токи. Теперь известно, что в атомах и молекулах действительно есть мельчайшие электрические токи, связанные с движением электронов по своим орбитам вокруг ядер. Из-за этого атомы и молекулы многих веществ, например парамагнетиков, обладают магнитными моментами. Поворот этих моментов во внешнем магнитном поле и приводит к намагничиванию парамагнитных веществ.

Выяснилось и другое. Все частицы, входящие в состав атома, обладают также магнитными моментами, вовсе не связанными с какими-либо движениями зарядов, то есть с токами. Для них магнитный момент является таким же «врожденным» качеством, как заряд, масса и т. п. Магнитным моментом обладает даже частица, не имеющая электрического заряда,- нейтрон, составная часть атомных ядер. Магнитным моментом обладают поэтому и атомные ядра.

Таким образом, магнитный момент - одно из самых важных понятий в физике.

МАГНИТНЫЙ МОМЕНТ - физ. величина, характеризующая магн. свойства системы заряж. частиц (или отд. частицы) и определяющая наряду с др. мультипольными моментами (дипольным электрич. моментом, квадрупольным моментом и т. д., см. Мулътиполи )взаимодействие системы с внеш. эл--магн. полями и с др. подобными системами.

Согласно представлениям классич. , магн. поле создаётся движущимися электрич. . Хотя совр. теория не отвергает (и даже предсказывает) существование частиц с магн. зарядом (магнитных монополей) , такие частицы пока экспериментально не наблюдались и в обычном веществе отсутствуют. Поэтому элементарной характеристикой магн. свойств оказывается именно М. м. Система, обладающая М. м. (аксиальный вектор), на больших расстояниях от системы создаёт магн. поле


(- радиус-вектор точки наблюдения). Аналогичный вид имеет электрич. поле диполя, состоящего из двух близко расположенных электрич. зарядов противоположного знака. Однако, в отличие от электрич. дипольного момента. М. м. создаётся не системой точечных "магн. зарядов", а электрич. токами, текущими внутри системы. Если замкнутый электрич. ток течёт в ограниченном объёме V , то создаваемый им М. м. определяется ф-лой

В простейшем случае замкнутого кругового тока I , текущего вдоль плоского витка площади s, , причём вектор М. м. направлен вдоль правой нормали к витку.

Если ток создаётся стационарным движением точечных электрич. зарядов с массами , имеющими скорости , то возникающий М. м., как следует из ф-лы (1), имеет вид


где подразумевается усреднение микроскопич. величин по времени. Поскольку стоящее в правой части векторное произведение пропорционально вектору момента кол-ва движения частицы (предполагается, что скорости ), то вклады отд. частиц в М. м. и в момент кол-ва движения оказываются пропорциональными:

Коэффициент пропорциональности е/2тс наз. ; эта величина характеризует универсальную связь между магн. и механич. свойствами заряж. частиц в классич. электродинамике. Однако движение элементарных носителей заряда в веществе (электронов) подчиняется законам , вносящей коррективы в классич. картину. Помимо орбитального механич. момента кол-ва движения L электрон обладает внутренним механич. моментом - спином . Полный М. м. электрона равен сумме орбитального М. м. (2) и спинового М. м.

Как видно из этой ф-лы (вытекающей из релятивистского Дирака уравнения для электрона), гиромагн. отношение для спина оказывается ровно в два раза больше, чем для орбитального момента. Особенностью квантового представления о магн. и механич. моментах является также то, что векторы не могут иметь определённого направления в пространстве вследствие некоммутативности операторов проекции этих векторов на оси координат.

Спиновый М. м. заряж. частицы, определяемый ф-лой (3), наз. нормальным, для электрона он равен магнетону Бора. Опыт показывает, однако, что М. м. электрона отличается от (3) на величину порядка ( - постоянная тонкой структуры). Подобная добавка, называемая

Магнитное поле характеризуется двумя векторными величинами. Индукция магнитного поля (магнитная индукция)

где – максимальная величина момента сил, действующего на замкнутый проводник площадью S , по которому течет ток I . Направление вектора совпадает с направлением правого буравчика относительно направления тока при свободной ориентации контура в магнитном поле.

Индукция определяется прежде всего токами проводимости, т.е. макроскопическими токами, текущими по проводникам. Кроме того, вклад в индукцию дают микроскопические токи, обусловленные движением электронов по орбитам вокруг ядер, а также и собственные (спиновые) магнитные моменты электронов. Токи и магнитные моменты ориентируются во внешнем магнитном поле. Поэтому индукция магнитного поля в веществе определяется как внешними макроскопическими токами, так и намагничиванием вещества.

Напряженность магнитного поля определяется только токами проводимости и токами смещения. Напряженность не зависит от намагничивания вещества и связана с индукцией соотношением:

где - относительная магнитная проницаемость вещества (безразмерная величина), - магнитная постоянная, равная 4 . Размерность напряженности магнитного поля равна .

Магнитный момент – векторная физическая величина, характеризующая магнитные свойства частицы или системы частиц, и определяющая взаимодействие частицы или системы частиц с внешними электромагнитными полями.

Роль, аналогичную точечному заряду в электричестве, играет замкнутый проводник с током, модуль магнитного момента которого в вакууме равен

где - сила тока, - площадь контура. Направление вектора определяется по правилу правого буравчика. В данном случае магнитный момент и магнитное поле создаются макроскопическим током (током проводимости), т.е. в результате упорядоченного движения заряженных частиц – электронов – внутри проводника. Размерность магнитного момента равна .

Магнитный момент может создаваться также и микротоками. Атом или молекула представляет собой положительно заряженное ядро и находящиеся в непрерывном движении электроны. Для объяснения ряда магнитных свойств с достаточным приближением можно считать, что электроны движутся вокруг ядра по определенным круговым орбитам. Следовательно, движение каждого электрона можно рассматривать, как упорядоченное движение носителей заряда, т.е. как замкнутый электрический ток (так называемый микроток или молекулярный ток). Сила тока I в этом случае будет равна , где –заряд, переносимый через сечение, перпендикулярное траектории электрона за время , e – модуль заряда; - частота обращения электрона.

Магнитный момент , обусловленный движением электрона по орбите –микротоком – называется орбитальным магнитным моментом электрона. Он равен , где S – площадь контура;

, (3)

где S – площадь орбиты, r – ее радиус. В результате движения электрона в атомах и молекулах по замкнутым траекториям вокруг ядра или ядер электрон обладает также и орбитальным моментом импульса

Здесь - линейная скорость электрона на орбите; - его угловая скорость. Направление вектора связано правилом правого буравчика с направлением вращения электрона, т.е. вектора и взаимно противоположны (рис.1). Отношение орбитального магнитного момента частицы к механическому называется гиромагнитным отношением . Разделив выражения (3) и (4) друг на друга, получим: отличен от нуля.

В предыдущем параграфе было выяснено, что действие магнитного поля на плоский контур с током определяется магнитным моментом контура , равным произведению силы тока в контуре на площадь контура (см. формулу (118.1)).

Единицей магнитного момента является ампер-метр в квадрате (). Чтобы дать представление об этой единице, укажем, что при силе тока 1 А магнитным моментом, равным 1 , обладает круговой контур радиуса 0,564 м () либо квадратный контур со стороной квадрата, равной 1 м. При силе тока 10 А магнитным моментом 1 обладает круговой контур радиуса 0,178 м () и т. д.

Электрон, движущийся с большой скоростью по круговой орбите, эквивалентен круговому току, сила которого равна произведению заряда электрона на частоту вращения электрона по орбите: . Если радиус орбиты равен , а скорость электрона – , то и, следовательно, . Магнитный момент, соответствующий этому току,

.

Магнитный момент является векторной величиной, направленной по нормали к контуру. Из двух возможных направлений нормали выбирается то, которое связано с направлением тока в контуре правилом правого винта (рис. 211). Вращение винта с правой нарезкой в направлении, совпадающем с направлением тока в контуре, вызывает продольное перемещение винта в направлении . Выбранная таким образом нормаль называется положительной. Направление вектора принимается совпадающим с направлением положительной нормали .

Рис. 211. Вращение головки винта в направлении тока вызывает перемещение винта в направлении вектора

Теперь мы можем уточнить определение направления магнитной индукции . За направление магнитной индукции принимается направление, в котором устанавливается под действием поля положительная нормаль к контуру с током, т. е. направление, в котором устанавливается вектор .

Единица магнитной индукции в СИ называется тесла (Тл) в честь сербского ученого Николы Теслы (1856-1943). Один тесла равен магнитной индукции однородного магнитного поля, в котором на плоский контур с током, имеющий магнитный момент один ампер-метр в квадрате, действует максимальный вращающий момент, равный одному ньютон-метру.

Из формулы (118.2) следует, что

119.1. Круговой контур радиуса 5 см, по которому течет ток силы 0,01 А, испытывает в однородном магнитном поле максимальный вращающий момент, равный Н×м. Какова магнитная индукция этого поля?

119.2. Какой вращающий момент действует на тот же контур, если нормаль к контуру образует с направлением поля угол 30°?

119.3. Найдите магнитный момент тока, создаваемого электроном, движущимся по круговой орбите радиуса м со скоростью м/с. Заряд электрона равен Кл.