История открытия элемента уран. Чем опасен уран и его соединения? Примеры решения задач

В статье рассказывается о том, когда был открыт такой химический элемент, как уран, и в каких отраслях производства в наше время применяется это вещество.

Уран - химический элемент энергетической и военной промышленности

Во все времена люди пытались найти высокоэффективные источники энергии, а в идеале - создать так называемый К сожалению, невозможность его существования теоретически доказали и обосновали еще в XIX веке, но ученые все равно никогда не теряли надежды воплотить в жизнь мечту о некоего рода устройстве, которое было бы способно выдавать большое количество «чистой» энергии на протяжении очень долгого времени.

Частично это удалось воплотить в жизнь с открытием такого вещества, как уран. Химический элемент с данным названием лег в основу разработки атомных реакторов, которые в наше время обеспечивают энергией целые города, подводные лодки, полярные суда и прочее. Правда, «чистой» их энергию назвать нельзя, но в последние годы множество фирм разрабатывают для широкой продажи компактные «атомные батарейки» на основе трития - в них нет подвижных частей и они безопасны для здоровья.

Однако в этой статье мы подробно разберем историю открытия химического элемента под названием уран и реакцию деления его ядер.

Определение

Уран - химический элемент, который имеет атомный номер 92 в периодической таблице Менделеева. Атомная же масса его составляет 238,029. Обозначается он символом U. В нормальных условиях является плотным, тяжелым металлом серебристого цвета. Если говорить о его радиоактивности, то сам по себе уран - элемент, обладающий слабой радиоактивностью. Также он не имеет в своем составе полностью стабильных изотопов. А самым стабильным из существующих изотопов считается уран-338.

С тем, что собой представляет данный элемент, мы разобрались, а теперь рассмотрим историю его открытия.

История

Такое вещество, как природная окись урана, известно людям с глубокой древности, а использовали ее древние мастера для изготовления глазури, которой покрывали различную керамику для водонепроницаемости сосудов и других изделий, а также их украшения.

Важной датой в истории открытия этого химического элемента стал 1789 год. Именно тогда химик и немец по происхождению Мартин Клапрот смог получить первый металлообразный уран. А свое название новый элемент получил в честь открытой восемью годами ранее планеты.

Почти 50 лет полученный тогда уран считали чистым металлом, однако, в 1840 году химик из Франции Эжен-Мелькьор Пелиго смог доказать, что материал, полученный Клапротом, несмотря на подходящие внешние признаки, вовсе не металл, а оксид урана. Чуть позже все тот же Пелиго получил настоящий уран - очень тяжелый металл серого цвета. Именно тогда впервые и был определен атомный вес такого вещества, как уран. Химический элемент в 1874 году был помещён Дмитрием Менделеевым в его знаменитую периодическую систему элементов, причём Менделеев удвоил атомный вес вещества в два раза. И лишь спустя 12 лет опытным путем было доказано, что не ошибался в своих расчетах.

Радиоактивность

Но по-настоящему широкая заинтересованность этим элементом в научных кругах началась в 1896 году, когда Беккерель открыл тот факт, что уран испускает лучи, которые были названы в честь исследователя - лучи Беккереля. Позже одна из знаменитейших учёных в этой области - Мария Кюри, назвала это явление радиоактивностью.

Следующей важной датой в изучении урана принято считать 1899 год: именно тогда Резерфорд обнаружил, что излучение урана является неоднородным и делится на два типа - альфа- и бета-лучи. А год спустя Поль Виллар (Вийяр) открыл и третий, последний известный нам на сегодняшний день тип радиоактивного излучения - так называемые гамма-лучи.

Спустя семь лет, в 1906 году, Резерфорд на основе своей теории радиоактивности провел первые опыты, цель которых заключалась в том, чтобы определить возраст различных минералов. Эти исследования положили начало в том числе формированию теории и практики

Деление ядер урана

Но, наверное, наиважнейшее открытие, благодаря которому началась широкая добыча и обогащение урана как в мирных, так и военных целях, - это процесс деления ядер урана. Произошло это в 1938 году, открытие было осуществлено силами немецких физиков Отто Гана и Фрица Штрассмана. Позже эта теория получила научные подтверждения в работах еще нескольких немецких физиков.

Суть открытого ими механизма состояла в следующем: если облучать ядро изотопа урана-235 нейтроном, то, захватывая свободный нейтрон, оно начинает делиться. И, как мы все теперь знаем, процесс этот сопровождается выделением колоссального количества энергии. Происходит это в основном благодаря кинетической энергии самого излучения и осколков ядра. Так что теперь мы знаем, как происходит деление ядер урана.

Открытие этого механизма и его результатов и является отправной точкой для использования урана как в мирных, так и военных целях.

Если говорить о его применении в военных целях, то впервые теорию о том, что можно создать условия для такого процесса, как непрерывная реакция деления ядра урана (поскольку для подрыва ядерной бомбы необходима огромная энергия), доказали советские физики Зельдович и Харитон. Но чтобы создать такую реакцию, уран должен быть обогащен, поскольку в обычном своем состоянии нужными свойствами он не обладает.

С историей этого элемента мы ознакомились, теперь разберемся, где же он применяется.

Применение и виды изотопов урана

После открытия такого процесса, как реакция цепного деления урана, перед физиками стал вопрос, где можно его использовать?

В настоящее время существует два основных направления, где используют изотопы урана. Это мирная (или энергетическая) промышленность и военная. И первая, и вторая использует реакцию изотопа урана-235, отличается лишь выходная мощность. Проще говоря, в атомном реакторе нет необходимости создавать и поддерживать этот процесс с той же мощностью, какая необходима для осуществления взрыва ядерной бомбы.

Итак, были перечислены основные отрасли, в которых используется реакция деления урана.

Но получение изотопа урана-235 - это необычайно сложная и затратная технологическая задача, и не каждое государство может позволить себе построить обогатительные фабрики. К примеру, для получения двадцати тонн уранового топлива, в котором содержание изотопа урана 235 будет составлять от 3-5%, потребуется обогатить более 153 тонн природного, «сырого» урана.

Изотоп урана-238 в основном применяют в конструктивной схеме ядерного оружия для увеличения его мощности. Также при захвате им нейтрона с последующим процессом бета-распада этот изотоп может со временем превращаться в плутоний-239 - распространенное топливо для большинства современных атомных реакторов.

Несмотря на все недостатки таких реакторов (большая стоимость, сложность обслуживания, опасность аварии), их эксплуатация окупается очень быстро, и энергии они производят несравнимо больше, чем классические тепловые или гидроэлектростанции.

Также реакция позволила создать ядерное оружие массового поражения. Оно отличается огромной силой, относительной компактностью и тем, что способно делать непригодным для проживания людей большие площади земли. Правда, в современном атомном оружии применяется плутоний, а не уран.

Обедненный уран

Существует и такая разновидность урана, как обедненный. Он отличается очень низким уровнем радиоактивности, а значит, не опасен для людей. Применяется он опять-таки в военной сфере, к примеру, его добавляют в броню американского танка «Абрамс» для придания ей дополнительной крепости. Помимо этого, практически во всех высокотехнологичных армиях можно встретить различные Помимо высокой массы, обладают они еще одним очень интересным свойством - после разрушения снаряда его осколки и металлическая пыль самовоспламеняются. И кстати, впервые такой снаряд применили во время Второй мировой войны. Как мы видим, уран - элемент, которому нашли применение в самых разных областях человеческой деятельности.

Заключение

По прогнозам ученых, примерно в 2030 году полностью истощатся все крупные месторождения урана, после чего начнется разработка труднодоступных его слоев и будет расти цена. Кстати, сама абсолютно безвредна для людей - некоторые шахтеры работают на его добыче целыми поколениями. Теперь мы разобрались в истории открытия этого химического элемента и в том, как применяют реакцию деления его ядер.

Кстати, известен интересный факт - соединения урана долгое время применялись в качестве красок для фарфора и стекла (так называемое вплоть до 1950-х годов.

Электронная конфигурация 5f 3 6d 1 7s 2 Химические свойства Ковалентный радиус 142 пм Радиус иона (+6e) 80 (+4e) 97 пм Электроотрицательность
(по Полингу) 1,38 Электродный потенциал U←U 4+ -1,38В
U←U 3+ -1,66В
U←U 2+ -0,1В Степени окисления 6, 5, 4, 3 Термодинамические свойства простого вещества Плотность 19,05 /см ³ Молярная теплоёмкость 27,67 Дж /( ·моль) Теплопроводность 27,5 Вт /( ·) Температура плавления 1405,5 Теплота плавления 12,6 кДж /моль Температура кипения 4018 Теплота испарения 417 кДж /моль Молярный объём 12,5 см ³/моль Кристаллическая решётка простого вещества Структура решётки орторомбическая Параметры решётки 2,850 Отношение c/a n/a Температура Дебая n/a
U 92
238,0289
5f 3 6d 1 7s 2
Уран

Уран (старое название Ураний ) — химический элемент с атомным номером 92 в периодической системе, атомная масса 238,029; обозначается символом U (Uranium ), относится к семейству актиноидов.

История

Ещё в древнейшие времена (I век до нашей эры) природная окись урана использовалась для изготовления жёлтой глазури для керамики. Исследования урана развивались, подобно порождаемой им цепной реакции. Вначале сведения о его свойствах, как и первые импульсы цепной реакции, поступали с большими перерывами, от случая к случаю. Первая важная дата в истории урана — 1789 год, когда немецкий натурфилософ и химик Мартин Генрих Клапрот восстановил извлечённую из саксонской смоляной руды золотисто-жёлтую «землю» до чёрного металлоподобного вещества. В честь самой далёкой из известных тогда планет (открытой Гершелем восемью годами раньше) Клапрот, считая новое вещество элементом, назвал его ураном.

Пятьдесят лет уран Клапрота числился металлом. Только в 1841 г. Эжен Мелькиор Пелиго — французский химик (1811—1890)] доказал, что, несмотря на характерный металлический блеск, уран Клапрота не элемент, а окисел UO 2 . В 1840 г. Пелиго удалось получить настоящий уран — тяжёлый металл серо-стального цвета и определить его атомный вес. Следующий важный шаг в изучении урана сделал в 1874 г. Д. И. Менделеев. Опираясь на разработанную им периодическую систему, он поместил уран в самой дальней клетке своей таблицы. Прежде атомный вес урана считали равным 120. Великий химик удвоил это значение. Через 12 лет предвидение Менделеева было подтверждено опытами немецкого химика Циммермана.

Изучение урана началось с 1896: французский химик Антуан Анри Беккерель случайно открыл Лучи Беккереля, которые позже Мария Кюри переименовала в радиоактивность. В это же время французскому химику Анри Муассану удалось разработать способ получения чистого металлического урана. В 1899 г. Резерфорд обнаружил, что излучение урановых препаратов неоднородно, что есть два вида излучения — альфа- и бета-лучи. Они несут различный электрический заряд; далеко не одинаковы их пробег в веществе и ионизирующая способность. Чуть позже, в мае 1900 г., Поль Вийар открыл третий вид излучения — гамма-лучи.

Эрнест Резерфорд провёл в 1907 г. первые опыты по определению возраста минералов при изучения радиоактивных урана и тория на основе созданной им совместно с Фредериком Содди (Soddy, Frederick, 1877—1956; Нобелевская премия по химии, 1921) теории радиоактивности. В 1913 г. Ф. Содди ввёл понятие об изотопах (от греч. ισος — «равный», «одинаковый», и τόπος — «место»), а в 1920 г.предсказал, что изотопы можно использовать для определения геологического возраста горных пород. В 1928 г. Ниггот реализовал, а в 1939 г. A.O.К.Нир (Nier,Alfred Otto Carl,1911 — 1994) создал первые уравнения для расчёта возраста и применил масс-спектрометр для разделения изотопов.

В 1939 Фредерик Жолио-Кюри и немецкие физики Отто Фриш и Лиза Мейтнер открыли неизвестное явление, происходящем с ядром урана при облучении его нейтронами. Происходило взрывное разрушения этого ядра с образованием новых элементов намного более лёгких, чем уран. Это разрушение носило взрывообразный характер, осколки продуктов разлетались в разные стороны с громадными скоростями. Таким образом было открыто явление, названное ядерной реакцией.

В 1939—1940 гг. Ю. Б. Харитон и Я. Б. Зельдович впервые теоретически показали, что при небольшом обогащении природного урана ураном-235 можно создать условия для непрерывного деления атомных ядер, то есть придать процессу цепной характер.

Нахождение в природе

Уранинитовая руда

Уран широко распространён в природе. Кларк урана составляет 1·10 -3 % (вес.). Количество урана в слое литосферы толщиной 20 км оценивается в 1,3·10 14 т.

Основная масса урана находится в кислых породах с высоким содержанием кремния . Значительная масса урана сконцентрирована в осадочных породах, особенно обогащённых органикой. В больших количествах как примесь уран присутствует в ториевых и редкоземельных минералах (ортит, сфен CaTiO 3 , монацит (La,Ce}PO 4 , циркон ZrSiO 4 , ксенотим YPO4 и др.). Важнейшими урановыми рудами являются настуран (урановая смолка), уранинит и карнотит. Основными минералами — спутниками урана являются молибденит MoS 2 , галенит PbS, кварц SiO 2 , кальцит CaCO 3 , гидромусковит и др.

Минерал Основной состав минерала Содержание урана, %
Уранинит UO 2 , UO 3 + ThO 2 , CeO 2 65-74
Карнотит K 2 (UO 2) 2 (VO 4) 2 ·2H 2 O ~50
Казолит PbO 2 ·UO 3 ·SiO 2 ·H 2 O ~40
Самарскит (Y, Er, Ce, U, Ca, Fe, Pb, Th)·(Nb, Ta, Ti, Sn) 2 O 6 3.15-14
Браннерит (U, Ca, Fe, Y, Th) 3 Ti 5 O 15 40
Тюямунит CaO·2UO 3 ·V 2 O 5 ·nH 2 O 50-60
Цейнерит Cu(UO 2) 2 (AsO 4)2·nH 2 O 50-53
Отенит Ca(UO 2) 2 (PO 4) 2 ·nH 2 O ~50
Шрекингерит Ca 3 NaUO 2 (CO 3) 3 SO 4 (OH)·9H 2 O 25
Уранофан CaO·UO 2 ·2SiO 2 ·6H 2 O ~57
Фергюсонит (Y, Ce)(Fe, U)(Nb, Ta)O 4 0.2-8
Торбернит Cu(UO 2) 2 (PO 4) 2 ·nH 2 O ~50
Коффинит U(SiO 4) 1-x (OH) 4x ~50

Основными формами нахождений урана в природе являются уранинит, настуран (урановая смолка) и урановые черни. Они отличаются только формами нахождения; имеется возрастная зависимость: уранинит присутствует преимущественно в древних (докембрийских породах), настуран — вулканогенный и гидротермальный — преимущественно в палеозойских и более молодых высоко- и среднетемпературных образованиях; урановые черни — в основном в молодых — кайнозойских и моложе образованиях — преимущественно в низкотемпературных осадочных породах.

Содержание урана в земной коре составляет 0,003 %, он встречается в поверхностном слое земли в виде четырех видов отложений. Во-первых, это жилы уранинита, или урановой смолки (диоксид урана UO2), очень богатые ураном, но редко встречающиеся. Им сопутствуют отложения радия, так как радий является прямым продуктом изотопного распада урана. Такие жилы встречаются в Заире, Канаде (Большое Медвежье озеро), Чехии и Франции . Вторым источником урана являются конгломераты ториевой и урановой руды совместно с рудами других важных минералов. Конгломераты обычно содержат достаточные для извлечения количества золота и серебра , а сопутствующими элементами становятся уран и торий. Большие месторождения этих руд находятся в Канаде, ЮАР, России и Австралии . Третьим источником урана являются осадочные породы и песчаники, богатые минералом карнотитом (уранил-ванадат калия), который содержит, кроме урана, значительное количество ванадия и других элементов. Такие руды встречаются в западных штатах США . Железоурановые сланцы и фосфатные руды составляют четвертый источник отложений. Богатые отложения обнаружены в глинистых сланцах Швеции . Некоторые фосфатные руды Марокко и США содержат значительные количества урана, а фосфатные залежи в Анголе и Центральноафриканской Республике еще более богаты ураном. Большинство лигнитов и некоторые угли обычно содержат примеси урана. Богатые ураном отложения лигнитов обнаружены в Северной и Южной Дакоте (США) и битумных углях Испании и Чехии

Изотопы урана

Природный уран состоит из смеси трёх изотопов : 238 U — 99,2739 % (период полураспада T 1/2 = 4,468×10 9 лет), 235 U — 0,7024 % (T 1/2 = 7,038×10 8 лет) и 234 U — 0,0057 % (T 1/2 = 2,455×10 5 лет). Последний изотоп является не первичным, а радиогенным, он входит в состав радиоактивного ряда 238 U.

Радиоактивность природного урана обусловлена в основном изотопами 238 U и 234 U, в равновесии их удельные активности равны. Удельная активность изотопа 235 U в природном уране в 21 раз меньше активности 238 U.

Известно 11 искусственных радиоактивных изотопов урана с массовыми числами от 227 до 240. Наиболее долгоживущий из них — 233 U (T 1/2 = 1,62×10 5 лет) получается при облучении тория нейтронами и способен к спонтанному делению тепловыми нейтронами.

Изотопы урана 238 U и 235 U являются родоначальниками двух радиоактивных рядов. Конечными элементами этих рядов являются изотопы свинца 206 Pb и 207 Pb.

В природных условиях распространены в основном изотопы 234 U : 235 U : 238 U = 0,0054: 0,711: 99,283. Половина радиоактивности природного урана обусловлена изотопом 234 U . Изотоп 234 U образуется за счёт распада 238 U . Для двух последних в отличие от других пар изотопов и независимо от высокой миграционной способности урана характерно географическое постоянство отношения . Величина этого отношения зависит о возраста урана. Многочисленные натурные измерения показали его незначительные колебания. Так в роллах величина этого отношения относительно эталона изменяется в пределах 0,9959 −1,0042, в солях — 0,996 — 1,005. В урансодержащих минералах (настуран, урановая чернь, циртолит, редкоземельные руды) величина этого отношения колеблется в пределах 137,30 — 138,51; причём различие между формами U IV и U VI не установлено; в сфене — 138,4. В отдельных метеоритах выявлен недостаток изотопа 235 U . Наименьшая его концентрация в земных условиях найдена в 1972 г. французским исследователем Бужигесом в местечке Окло в Африке(месторождение в Габоне). Так в нормальном уране содержится 0,7025 % урана 235 U, тогда как в Окло оно уменьшаются до 0,557 %. Это послужило подтверждением гипотезы о наличии природного ядерного реактора, ведущего к выгоранию изотопа, предсказанной Джордж Ветрилл (George W. Wetherill) из Калифорнийского университета в Лос-Анджелесе и Марк Ингрэмом (Mark G. Inghram) из Чикагского университета и Полом Курода (Paul K. Kuroda), химиком из Университета Арканзаса, ещё в 1956 г. описавшим процесс. Кроме этого, в этих же округах найдены природные ядерные реакторы: Окелобондо, Бангомбе (Bangombe) и др. В настоящее время известно около 17 природных ядерных реакторов.

Получение

Самая первая стадия уранового производства — концентрирование. Породу дробят и смешивают с водой. Тяжёлые компоненты взвеси осаждаются быстрее. Если порода содержит первичные минералы урана, то они осаждаются быстро: это тяжёлые минералы. Вторичные минералы урана легче, в этом случае раньше оседает тяжёлая пустая порода. (Впрочем, далеко не всегда она действительно пустая; в ней могут быть многие полезные элементы, в том числе и уран).

Следующая стадия — выщелачивание концентратов, перевод урана в раствор. Применяют кислотное и щелочное выщелачивание. Первое — дешевле, поскольку для извлечения урана используют серную кислоту. Но если в исходном сырье, как, например, в урановой смолке , уран находится в четырёхвалентном состоянии, то этот способ неприменим: четырёхвалентный уран в серной кислоте практически не растворяется. В этом случае нужно либо прибегнуть к щелочному выщелачиванию, либо предварительно окислять уран до шестивалентного состояния.

Не применяют кислотное выщелачивание и в тех случаях, если урановый концентрат содержит доломит или магнезит, реагирующие с серной кислотой. В этих случаях пользуются едким натром (гидроксидом натрия ).

Проблему выщелачивания урана из руд решает кислородная продувка. В нагретую до 150 °C смесь урановой руды с сульфидными минералами подают поток кислорода. При этом из сернистых минералов образуется серная кислота, которая и вымывает уран.

На следующем этапе из полученного раствора нужно избирательно выделить уран. Современные методы — экстракция и ионный обмен — позволяют решить эту проблему.

Раствор содержит не только уран, но и другие катионы. Некоторые из них в определённых условиях ведут себя так же, как уран: экстрагируются теми же органическими растворителями, оседают на тех же ионообменных смолах, выпадают в осадок при тех же условиях. Поэтому для селективного выделения урана приходится использовать многие окислительно-восстановительные реакции, чтобы на каждой стадии избавляться от того или иного нежелательного попутчика. На современных ионообменных смолах уран выделяется весьма селективно.

Методы ионного обмена и экстракции хороши ещё и тем, что позволяют достаточно полно извлекать уран из бедных растворов (содержание урана — десятые доли грамма на литр).

После этих операций уран переводят в твёрдое состояние — в один из оксидов или в тетрафторид UF 4 . Но этот уран ещё надо очистить от примесей с большим сечением захвата тепловых нейтронов — бора , кадмия , гафния. Их содержание в конечном продукте не должно превышать стотысячных и миллионных долей процента. Для удаления этих примесей технически чистое соединение урана растворяют в азотной кислоте. При этом образуется уранилнитрат UO 2 (NO 3) 2 , который при экстракции трибутил-фосфатом и некоторыми другими веществами дополнительно очищается до нужных кондиций. Затем это вещество кристаллизуют (или осаждают пероксид UO 4 ·2H 2 O) и начинают осторожно прокаливать. В результате этой операции образуется трёхокись урана UO 3 , которую восстанавливают водородом до UO 2 .

На диоксид урана UO 2 при температуре от 430 до 600 °C воздействуют сухим фтористым водородом для получения тетрафторида UF 4 . Из этого соединения восстанавливают металлический уран с помощью кальция или магния .

Физические свойства

Уран — очень тяжёлый, серебристо-белый глянцеватый металл. В чистом виде он немного мягче стали, ковкий, гибкий, обладает небольшими парамагнитными свойствами. Уран имеет три аллотропные формы: альфа (призматическая, стабильна до 667,7 °C), бета (четырёхугольная, стабильна от 667,7 °C до 774,8 °C), гамма (с объёмно центрированной кубической структурой, существующей от 774,8 °C до точки плавления).

Радиоактивные свойства некоторых изотопов урана (выделены природные изотопы):

Химические свойства

Уран может проявлять степени окисления от +III до +VI. Соединения урана(III) образуют неустойчивые растворы красного цвета и являются сильными восстановителями:

4UCl 3 + 2H 2 O → 3UCl 4 + UO 2 + H 2

Соединения урана(IV) являются наиболее устойчивыми и образуют водные растворы зелёного цвета.

Соединения урана(V) неустойчивы и легко диспропорционируют в водном растворе:

2UO 2 Cl → UO 2 Cl 2 + UO 2

Химически уран очень активный металл. Быстро окисляясь на воздухе, он покрывается радужной пленкой оксида. Мелкий порошок урана самовоспламеняется на воздухе, он зажигается при температуре 150—175 °C, образуя U 3 O 8 . При 1000 °C уран соединяется с азотом, образуя желтый нитрид урана. Вода способна разъедать металл, медленно при низкой температуре, и быстро при высокой, а также при мелком измельчении порошка урана. Уран растворяется в соляной, азотной и других кислотах, образуя четырёхвалентные соли, зато не взаимодействует с щелочами. Уран вытесняет водород из неорганических кислот и солевых растворов таких металлов, как ртуть , серебро , медь , олово , платина и золото . При сильном встряхивании металлические частицы урана начинают светиться. Уран имеет четыре степени окисления — III—VI. Шестивалентные соединения включают в себя триокись урана (окись уранила) UO 3 и уранилхлорид урана UO 2 Cl 2 . Тетрахлорид урана UCl 4 и диоксид урана UO 2 — примеры четырёхвалентного урана. Вещества, содержащие четырёхвалентный уран, обычно нестабильны и обращаются в шестивалентные при длительном пребывании на воздухе. Ураниловые соли, такие как уранилхлорид, распадаются в присутствии яркого света или органики.

Применение

Ядерное топливо

Наибольшее применение имеет изотоп урана 235 U, в котором возможна самоподдерживающаяся цепная ядерная реакция. Поэтому этот изотоп используется как топливо в ядерных реакторах, а также в ядерном оружии. Выделение изотопа U 235 из природного урана — сложная технологическая проблема, (см. разделение изотопов).

Изотоп U 238 способен делиться под влиянием бомбардировки высокоэнергетическими нейтронами, эту его особенность используют для увеличения мощности термоядерного оружия (используются нейтроны, порождённые термоядерной реакцией).

В результате захвата нейтрона с последующим β-распадом 238 U может превращаться в 239 Pu, который затем используется как ядерное топливо.

Уран-233, искусственно получаемый в реакторах из тория (торий-232 захватывает нейтрон и превращается в торий-233, который распадается в протактиний-233 и затем в уран-233), может в будущем стать распространённым ядерным топливом для атомных электростанций (уже сейчас существуют реакторы, использующие этот нуклид в качестве топлива, например KAMINI в Индии) и производства атомных бомб (критическая масса около 16 кг).

Уран-233 также является наиболее перспективным топливом для газофазных ядерных ракетных двигателей.

Геология

Основная отрасль использования урана — определение возраста минералов и горных пород с целью выяснения последовательности протекания геологических процессов. Этим занимаются Геохронология и Теоретическая геохронология. Существенное значение имеет также решение задачи о смешении и источниках вещества.

В основе решения задачи лежат уравнения радиоактивного распада, описываемых уравнениями.

где 238 U o , 235 U o — современные концентрации изотопов урана; ; —постоянные распада атомов соответственно урана 238 U и 235 U .

Весьма важным является их комбинация:

.

В связи с тем, что горные породы содержат различные концентрации урана, они обладают различной радиоактивностью. Это свойство используется при выделении горных пород геофизическими методами. Наиболее широко этот метод применяется в нефтяной геологии при геофизических исследованиях скважин, в этот комплекс входит, в частности, γ — каротаж или нейтронный гамма-каротаж, гамма-гамма-каротаж и т. д. С их помощью происходт выделение коллекторов и флюидоупоров.

Другие сферы применения

Небольшая добавка урана придаёт красивую жёлто-зелёную флуоресценцию стеклу (Урановое стекло).

Уранат натрия Na 2 U 2 O 7 использовался как жёлтый пигмент в живописи.

Соединения урана применялись как краски для живописи по фарфору и для керамических глазурей и эмалей (окрашивают в цвета: жёлтый, бурый, зелёный и чёрный, в зависимости от степени окисления).

Некоторые соединения урана светочувствительны.

В начале XX века уранилнитрат широко применялся для усиления негативов и окрашивания (тонирования) позитивов (фотографических отпечатков) в бурый цвет.

Карбид урана-235 в сплаве с карбидом ниобия и карбидом циркония применяется в качестве топлива для ядерных реактивных двигателей (рабочее тело — водород + гексан).

Сплавы железа и обеднённого урана (уран-238) применяются как мощные магнитострикционные материалы.

Обеднённый уран

Обеднённый уран

После извлечения 235 U и 234 U из природного урана, оставшийся материал (уран-238) носит название «обеднённый уран», так как он обеднён 235-м изотопом. По некоторым данным, в США хранится около 560 000 тонн обеднённого гексафторида урана (UF 6).

Обеднённый уран в два раза менее радиоактивен, чем природный уран, в основном за счёт удаления из него 234 U. Из-за того, что основное использование урана — производство энергии, обеднённый уран — малополезный продукт с низкой экономической ценностью.

В основном его использование связано с большой плотностью урана и относительно низкой его стоимостью. Обеднённый уран используется для радиационной защиты (как это ни странно) и как балластная масса в аэрокосмических применениях, таких как рулевые поверхности летательных аппаратов. В каждом самолёте «Боинг-747» содержится 1500 кг обеднённого урана для этих целей. Ещё этот материал применяется в высокоскоростных роторах гироскопов, больших маховиках, как балласт в космических спускаемых аппаратах и гоночных яхтах, при бурении нефтяных скважин.

Сердечники бронебойных снарядов

Наконечник (вкладыш) снаряда калибра 30 мм (пушки GAU-8 самолёта A-10) диаметром около 20 мм из обеднённого урана.

Самое известное применение обеднённого урана — в качестве сердечников для бронебойных снарядов. При сплавлении с 2 % Mo или 0,75 % Ti и термической обработке (быстрая закалка разогретого до 850 °C металла в воде или масле, дальнейшее выдерживание при 450 °C 5 часов) металлический уран становится твёрже и прочнее стали (прочность на разрыв больше 1600 МПа, при том, что у чистого урана она равна 450 МПа). В сочетании с большой плотностью, это делает закалённую урановую болванку чрезвычайно эффективным средством для пробивания брони, аналогичным по эффективности более дорогому вольфраму. Тяжёлый урановый наконечник также изменяет распределение масс в снаряде, улучшая его аэродинамическую устойчивость.

Подобные сплавы типа «Стабилла» применяются в стреловидных оперенных снарядах танковых и противотанковых артиллерийских орудий.

Процесс разрушения брони сопровождается измельчением в пыль урановой болванки и воспламенением её на воздухе с другой стороны брони (см. Пирофорность). Около 300 тонн обеднённого урана остались на поле боя во время операции «Буря в Пустыне» (по большей части это остатки снарядов 30-мм пушки GAU-8 штурмовых самолётов A-10, каждый снаряд содержит 272 г уранового сплава).

Такие снаряды были использованы войсками НАТО в боевых действиях на территории Югославии. После их применения обсуждалась экологическая проблема радиационного загрязнения территории страны.

Впервые уран в качестве сердечника для снарядов был применен в Третьем рейхе.

Обеднённый уран используется в современной танковой броне, например, танка M-1 «Абрамс».

Физиологическое действие

В микроколичествах (10 −5 —10 −8 %) обнаруживается в тканях растений, животных и человека. В наибольшей степени накапливается некоторыми грибами и водорослями. Соединения урана всасываются в желудочно-кишечном тракте (около 1 %), в легких — 50 %. Основные депо в организме: селезёнка, почки, скелет, печень, лёгкие и бронхо-лёгочные лимфатические узлы. Содержание в органах и тканях человека и животных не превышает 10 −7 г.

Уран и его соединения токсичны . Особенно опасны аэрозоли урана и его соединений. Для аэрозолей растворимых в воде соединений урана ПДК в воздухе 0,015 мг/м³, для нерастворимых форм урана ПДК 0,075 мг/м³. При попадании в организм уран действует на все органы, являясь общеклеточным ядом. Молекулярный механизм действия урана связан с его способностью подавлять активность ферментов. В первую очередь поражаются почки (появляются белок и сахар в моче, олигурия). При хронической интоксикации возможны нарушения кроветворения и нервной системы.

Добыча по странам в тоннах по содержанию U на 2005—2006 гг.

Добыча по компаниям в 2006 г.:

Cameco — 8,1 тыс. тонн

Rio Tinto — 7 тыс. тонн

AREVA — 5 тыс. тонн

Казатомпром — 3,8 тыс.тонн

ОАО ТВЭЛ — 3,5 тыс. тонн

BHP Billiton — 3 тыс. тонн

Навоийский ГМК — 2,1 тыс. тонн (Узбекистан , Навои )

Uranium One — 1 тыс. тонн

Heathgate — 0,8 тыс. тонн

Denison Mines — 0,5 тыс. тонн

Добыча в России

В СССР основными уранорудными регионами были Украина (месторождение Желтореченское, Первомайское и др.), Казахстан (Северный — Балкашинское рудное поле и др.; Южный — Кызылсайское рудное поле и др.; Восточный; все они принадлежат преимущественно вулканогенно -гидротермальному типу); Забайкалье (Антей, Стрельцовское и др.); Средняя Азия, в основном Узбекистан с оруденениями в чёрных сланцах с центром в г. Учкудук. Имеется масса мелких рудопроявлений и проявлений. В России основным урановорудным регионом осталось Забайкалье. На месторождении в Читинской области (около города Краснокаменск) добывается около 93 % российского урана. Добычу осуществляет шахтным способом «Приаргунское производственное горно-химическое объединение» (ППГХО), входящее в состав ОАО «Атомредметзолото» (Урановый холдинг).

Остальные 7 % получают методом подземного выщелачивания ЗАО «Далур» (Курганская область) и ОАО «Хиагда» (Бурятия).

Полученные руды и урановый концентрат перерабатываются на Чепецком механическом заводе.

Добыча в Казахстане

В Казахстане сосредоточена примерно пятая часть мировых запасов урана (21% и 2 место в мире). Общие ресурсы урана порядка 1,5 млн. тонн, из них около 1,1 млн. тонн можно добывать методом подземного выщелачивания.

В 2009 году Казахстан вышел на первое место в мире по добыче урана.

Добыча на Украине

Основное предприятие — Восточный горно-обогатительный комбинат в городе Жёлтые Воды.

Стоимость

Несмотря на бытующие легенды о десятках тысяч долларов за килограммовые или даже грамовые количества урана, реальная его цена на рынке не очень высока — необогащённая окись урана U 3 O 8 стоит меньше 100 американских долларов за килограмм. Связано это с тем, что для запуска атомного реактора на необогащённом уране нужны десятки или даже сотни тонн топлива, а для изготовления ядерного оружия следует обогатить большое количество урана для получения пригодных для создания бомбы концентраций

Уран - химический элемент семейства актиноидов с атомным номером 92. Является важнейшим ядерным топливом. Его концентрация в земной коре составляет около 2 частей на миллион. К важным урановым минералам относятся окись урана (U 3 O 8), уранинит (UO 2), карнотит (уранил-ванадат калия), отенит (уранил-фосфат калия) и торбернит (водный фосфат меди и уранила). Эти и другие урановые руды являются источниками ядерного топлива и содержат во много раз больше энергии, чем все известные извлекаемые месторождения ископаемого топлива. 1 кг урана 92 U дает столько же энергии, сколько 3 млн кг угля.

История открытия

Химический элемент уран - плотный, твердый металл серебристо-белого цвета. Он пластичный, ковкий и поддается полировке. В воздухе метал окисляется и в измельченном состоянии загорается. Относительно плохо проводит электричество. Электронная формула урана - 7s2 6d1 5f3.

Хотя элемент был обнаружен в 1789 г. немецким химиком Мартином Генрихом Клапротом, который назвал его в честь недавно открытой планеты Уран, сам металл был изолирован в 1841 г. французским химиком Эженом-Мельхиором Пелиго путем восстановления из тетрахлорида урана (UCl 4) калием.

Радиоактивность

Создание периодической системы российским химиком Дмитрием Менделеевым в 1869 году сосредоточило внимание на уране как на самом тяжелом из известных элементов, которым он оставался до открытия нептуния в 1940 г. В 1896-м французский физик Анри Беккерель обнаружил в нем явление радиоактивности. Это свойство позже было найдено во многих других веществах. Теперь известно, что радиоактивный во всех его изотопах уран состоит из смеси 238 U (99,27 %, период полураспада - 4 510 000 000 лет), 235 U (0,72 %, период полураспада - 713 000 000 лет) и 234 U (0,006 %, период полураспада - 247 000 лет). Это позволяет, например, определять возраст горных пород и минералов для изучения геологических процессов и возраста Земли. Для этого в них измеряется количество свинца, который является конечным продуктом радиоактивного распада урана. При этом 238 U является исходным элементом, а 234 U - один из продуктов. 235 U порождает ряд распада актиния.

Открытие цепной реакции

Химический элемент уран стал предметом широкого интереса и интенсивного изучения после того, как немецкие химики Отто Хан и Фриц Штрассман в конце 1938 г. при его бомбардировке медленными нейтронами обнаружили в нем ядерное деление. В начале 1939 г. американский физик итальянского происхождения Энрико Ферми предположил, что среди продуктов расщепления атома могут быть элементарные частицы, способные породить цепную реакцию. В 1939 г. американские физики Лео Сциллард и Герберт Андерсон, а также французский химик Фредерик Жолио-Кюри и их коллеги подтвердили это предсказание. Последующие исследования показали, что в среднем при делении атома высвобождается 2,5 нейтрона. Эти открытия привели к первой самоподдерживающейся цепной ядерной реакции (02.12.1942), первой атомной бомбе (16.07.1945), первому ее использованию в ходе военных действий (06.08.1945), первой атомной подводной лодке (1955) и первой полномасштабной атомной электростанции (1957).

Состояния окисления

Химический элемент уран, являясь сильным электроположительным металлом, реагирует с водой. Он растворяется в кислотах, но не в щелочах. Важными состояниями окисления являются +4 (как в оксиде UO 2 , тетрагалогенидах, таких как UCl 4 , и зеленом водном ионе U 4+) и +6 (как в оксиде UO 3 , гексафториде UF 6 и ионе уранила UO 2 2+). В водном растворе уран наиболее устойчив в составе иона уранила, обладающего линейной структурой [О = U = О] 2+ . Элемент также имеет состояния +3 и +5, но они неустойчивы. Красный U 3+ медленно окисляется в воде, которая не содержит кислорода. Цвет иона UO 2 + неизвестен, поскольку он претерпевает диспропорционирование (UO 2 + одновременно сводится к U 4+ и окисляется до UO 2 2+) даже в очень разбавленных растворах.

Ядерное топливо

При воздействии медленных нейтронов деление атома урана происходит в относительно редком изотопе 235 U. Это единственный природный расщепляющийся материал, и он должен быть отделен от изотопа 238 U. Вместе с тем после поглощения и отрицательного бета-распада уран-238 превращается в синтетический элемент плутоний, который расщепляется под действием медленных нейтронов. Поэтому природный уран можно использовать в реакторах-преобразователях и размножителях, в которых деление поддерживается редким 235 U и одновременно с трансмутацией 238 U производится плутоний. Из широко распространенного в природе изотопа тория-232 может быть синтезирован делящийся 233 U для использования в качестве ядерного топлива. Уран также важен как первичный материал, из которого получают синтетические трансурановые элементы.

Другие применения урана

Соединения химического элемента ранее использовались в качестве красителей для керамики. Гексафторид (UF 6) представляет собой твердое вещество с необычно высоким давлением паров (0,15 атм = 15 300 Па) при 25 °C. UF 6 химически очень реактивный, но, несмотря на его коррозионную природу в парообразном состоянии, UF 6 широко используется в газодиффузионных и газоцентрифужных методах получения обогащенного урана.

Металлоорганические соединения представляют собой интересную и важную группу соединений, в которых связи металл-углерод соединяют металл с органическими группами. Ураноцен является органоураническим соединением U(С 8 Н 8) 2 , в котором атом урана зажат между двумя слоями органических колец, связанными с циклооктатетраеном C 8 H 8 . Его открытие в 1968 г. открыло новую область металлоорганической химии.

Обедненный природный уран применяется в качестве средства радиационной защиты, балласта, в бронебойных снарядах и танковой броне.

Переработка

Химический элемент, хотя и очень плотный (19,1 г/см 3), является относительно слабым, невоспламеняющимся веществом. Действительно, металлические свойства урана, по-видимому, позиционируют его где-то между серебром и другими истинными металлами и неметаллами, поэтому его не используют в качестве конструкционного материала. Основная ценность урана заключается в радиоактивных свойствах его изотопов и их способности делиться. В природе почти весь (99,27 %) металл состоит из 238 U. Остальную часть составляют 235 U (0,72 %) и 234 U (0,006 %). Из этих естественных изотопов только 235 U непосредственно расщепляется нейтронным облучением. Однако при его поглощении 238 U образует 239 U, который в конечном итоге распадается на 239 Pu - делящийся материал, имеющий большое значение для атомной энергетики и ядерного оружия. Другой делящийся изотоп, 233 U, может образоваться нейтронным облучением 232 Th.

Кристаллические формы

Характеристики урана обусловливают его реакцию с кислородом и азотом даже в нормальных условиях. При более высоких температурах он вступает в реакцию с широким спектром легирующих металлов, образуя интерметаллические соединения. Образование твердых растворов с другими металлами происходит редко из-за особых кристаллических структур, образованных атомами элемента. Между комнатной температурой и температурой плавления 1132 °C металлический уран существует в 3 кристаллических формах, известных как альфа (α), бета (β) и гамма (γ). Трансформация из α- в β-состояние происходит при 668 °C и от β до γ - при 775 °C. γ-уран имеет объемноцентрированную кубическую кристаллическую структуру, а β - тетрагональную. α-фаза состоит из слоев атомов в высокосимметричной орторомбической структуре. Эта анизотропная искаженная структура препятствует атомам легирующих металлов заменять атомы урана или занимать пространство между ними в кристаллической решетке. Обнаружено, что твердые растворы образуют только молибден и ниобий.

Руды

Земная кора содержит около 2 частей урана на миллион, что говорит о его широком распространении в природе. По оценкам, океаны содержат 4,5 × 10 9 т этого химического элемента. Уран является важной составляющей более чем 150 различных минералов и второстепенным компонентом еще 50. Первичные минералы, обнаруженные в магматических гидротермальных жилах и в пегматитах, включают уранинит и его разновидность настуран. В этих рудах элемент встречается в форме диоксида, который вследствие окисления может варьироваться от UO 2 до UO 2,67 . Другой экономически значимой продукцией урановых рудников являются аутунит (гидратированный уранилфосфат кальция), тобернит (гидратированный уранилфосфат меди), коффинит (черный гидратированный силикат урана) и карнотит (гидратированный уранил-ванадат калия).

По оценкам, более 90 % известных недорогих запасов урана приходится на Австралию, Казахстан, Канаду, Россию, Южную Африку, Нигер, Намибию, Бразилию, КНР, Монголию и Узбекистан. Большие месторождения находятся в конгломератных скальных образованиях озера Эллиот, расположенного к северу от озера Гурон в Онтарио, Канада, и в южноафриканском золотом прииске Витватерсранде. Песчаные образования на плато Колорадо и в Вайомингском бассейне западной части США также содержатся значительные запасы урана.

Добыча

Урановые руды встречаются как в приповерхностных, так и глубоких (300-1200 м) отложениях. Под землей мощность пласта достигает 30 м. Как и в случае с рудами других металлов, добыча урана на поверхности производится крупным землеройным оборудованием, а разработка глубоких отложений - традиционными методами вертикальных и наклонных шахт. Мировое производство уранового концентрата в 2013 г. составило 70 тыс. т. Наиболее продуктивные урановые рудники расположены в Казахстане (32 % всей добычи), Канаде, Австралии, Нигере, Намибии, Узбекистане и России.

Урановые руды обычно включают лишь небольшое количество ураносодержащих минералов, и они не поддаются плавке прямыми пирометаллургическими методами. Вместо этого для извлечения и очистки урана должны использоваться гидрометаллургические процедуры. Повышение концентрации значительно снижает нагрузку на контуры обработки, но ни один из обычных способов обогащения, обычно используемых для переработки полезных ископаемых, например гравитационный, флотация, электростатический и даже ручная сортировка, неприменимы. За немногими исключениями эти методы приводят к значительной потере урана.

Обжиг

Гидрометаллургической обработке урановых руд часто предшествует высокотемпературная стадия кальцинирования. Обжиг обезвоживает глину, удаляет углеродистые материалы, окисляет соединения серы до безобидных сульфатов и окисляет любые другие восстановители, которые могут мешать последующей обработке.

Выщелачивание

Из обожженных руд уран извлекается как кислотными, так и щелочными водными растворами. Для успешного функционирования всех систем выщелачивания химический элемент должен либо первоначально присутствовать в более стабильной 6-валентной форме, либо окисляться до этого состояния в процессе обработки.

Кислотное выщелачивание обычно проводят путем перемешивания смеси руды и выщелачивателя в течение 4-48 ч при температуре окружающей среды. За исключением особых обстоятельств используется серная кислота. Ее подают в количествах, достаточных для получения конечного щелока при рН 1,5. Схемы выщелачивания серной кислоты обычно используют либо диоксид марганца, либо хлорат для окисления четырехвалентного U 4+ до 6-валентного уранила (UO 2 2+). Как правило, для окисления U 4+ достаточно примерно 5 кг двуокиси марганца или 1,5 кг хлората натрия на тонну. В любом случае окисленный уран реагирует с серной кислотой с образованием уранилсульфатного комплексного аниона 4- .

Руда, содержащая значительное количество основных минералов, таких как кальцит или доломит, выщелачивается 0,5-1-молярным раствором карбоната натрия. Хотя были изучены и протестированы различные реагенты, основным окислителем урана является кислород. Обычно руда выщелачиваются на воздухе при атмосферном давлении и при температуре 75-80 °C в течение периода времени, который зависит от конкретного химического состава. Щелочь реагирует с ураном с образованием легкорастворимого комплексного иона 4- .

Перед дальнейшей обработкой растворы, образующиеся в результате кислотного или карбонатного выщелачивания, должны быть осветлены. Крупномасштабное разделение глин и других рудных шламов осуществляется за счет использования эффективных хлопьеобразующих агентов, в том числе полиакриламидов, гуаровой смолы и животного клея.

Экстракция

Сложные ионы 4- и 4- могут быть сорбированы из их соответствующих выщелачивающих растворов ионообменных смол. Эти специальные смолы, характеризующиеся кинетикой их сорбции и элюирования, размером частиц, стабильностью и гидравлическими свойствами, могут использоваться в различных технологиях обработки, например в неподвижном и подвижном слое, методом ионообменной смолы в пульпе корзинного и непрерывного типа. Обычно для элюирования сорбированного урана используют растворы хлорида натрия и аммиака или нитратов.

Уран можно выделить из кислых рудных щелоков путем экстракции растворителем. В промышленности используются алкилфосфорные кислоты, а также вторичные и третичные алкиламины. Как правило, экстракция растворителем предпочтительна по сравнению с ионообменными методами для кислотных фильтратов, содержащих более 1 г/л урана. Однако этот метод не применяется при карбонатном выщелачивании.

Затем уран очищают, растворяя в азотной кислоте с образованием уранилнитрата, экстрагируют, кристаллизуют и прокаливают с образованием трехокиси UO 3 . Восстановленный диоксид UO2 реагирует с фтористым водородом с образованием тетафторида UF4, из которого металлический уран восстанавливается магнием или кальцием при температуре 1300 °C.

Тетрафторид можно фторировать при температуре 350 °C до образования гексафторида UF 6 , используемого для отделения обогащенного урана-235 методом газовой диффузии, газового центрифугирования или жидкой термодиффузии.

УРАН (Uranium; от назв. планеты Уран), U - радиоактивный хим. элемент III группы периодической системы элементов; ат. н. 92, ат. м. 238,029; относится к актиноидам. Серебристо-белый блестящий металл. В соединениях проявляет степени окисления от +2 до +6, наиболее характерны +4 и +6.

Природный Уран состоит из изотопов 238U (99,282%), 235U (0,712%) и 234U (0,006%). Среди искусственных изотопов практическое значение имеет изотоп 233U. У. в виде окисла U02 открыл (1789) нем. химик М.-Г. Клапрот. Металлический уран получил (1841) франц. химик Э.-М. Пелиго. С 40-х гг. 20 в. У. приобрел значение как источник ядерной энергии, выделяющейся в процессе деления его атомов при захвате нейтронов; этим св-вом обладают 235U и 233U . Изотоп 238U при захвате нейтронов превращается в (239Рu), к-рый также является ядерным горючим. Содержание урана в земной коре 0,3-0,0004%. Главным его минералом является разновидность уранита - настуран (урановая смолка) (40-76% U). В малых количествах уран содержится в гранитах (0,0004%), в почвах (0,0001 -0,00004%) и водах (~10 -8 %).

Известны три его аллотропические модификации: альфа-уран с ромбической кристаллической решеткой и с периодами а = 2,8541 А, b = 5,8692 А и с = 4,9563 А (т-ра 25° С), к-рый переходит при т-ре 667,7° С в бета-уран с тетрагональной кристаллической решеткой и с периодами а = 10,759 А и с = 5,656 A (т-ра 720° С); выше т-ры 774,8° С устойчив гамма-уран с объемноцентри-рованной кубической, решеткой и с периодом а = 3,524 А (т-ра 805° С).

Плотность альфа-урана при комнатной т-ре 19,05 г/см3; tпл 1132° С; tкип 3820° С (давление 1 ат). Теплоты превращений альфа ⇄ бета, бета ⇄ гамма, плавления и испарения уран соответственно ~ 0,70; 1,15; 4,75 и 107-117 ккал/моль. Теплоемкость с = 6,4 кал/моль (т-ра 25° С). Средний коэфф. термического расширения альфа-урана по осям a, b и с в интервале т-р 20-500° С соответственно 32,9; -6,3 и 27,6 10-6 град-1. Коэффициент теплопроводности урана при комнатной т-ре ~ 0,06 кал/см сек град и увеличивается с ростом т-ры. Электрическое сопротивление альфа-урана зависит от кристаллографического направления; усредненная его величина уран поликристаллического образца высокой чистоты ~ 30 мком х см при комнатной т-ре и увеличивается до ~ 54 мком х см при т-ре 600° С. У альфа-урана наблюдается также анизотропия модуля Юнга. У поликристаллического альфа-урана модуль Юнга 2,09 х 10 4 кгс/мм2; модуль сдвига 0,85 х 10 4 кгс/мм2; коэфф. Пуассона 0,23. Твердость альфа-урана при комнатной т-ре HV = 200, но снижается до 12 при т-ре 600° С.

При переходе из альфа- в бета-уран твердость увеличивается от ~ 10 до ~ 30. Предел прочности на растяжение отожженного альфа-урана (0,02% С) при т-ре 20° С составляет ~ 42 кгс/мм2, увеличивается до 49 кгс/мм2 при т-ре 100 9 С и затем почти линейно снижается до ~ 11 кгс/мм2 с повышением т-ры до 600° С. При т-ре 20° С предел текучести, относительное удлинение и относительное сужение соответственно 26 кгс/мм2, 8 и 11%, а при т-ре 600° С - 9 кгс/мм2, 26 и 65%. Увеличение содержания углерода от 0,01 до 0,20% повышает пределы прочности и текучести σ 0,2 соответственно от 37 и 24 до 52 и 32 кгс/мм2. Все механические характеристики уран существенно зависят от наличия примесей и предварительной обработки.

Ползучесть урана особенно зависит от циклических изменений т-ры, что связано с дополнительными термическими напряжениями, возникающими из-за большой разницы коэфф. термического расширения по различным кристаллографическим направлениям альфа-урана. Ударная вязкость альфа-урана (0,03% С), невысокая при т-рах 20 и 100° С (соответственно 1,4 и 2,3 кгс-м/см2), увеличивается почти линейно до 11,7 кгс-м/см2 при т-ре 500° С. Характерной особенностью является удлинение прутков поликристаллического альфа-урана с текстурой вдоль оси под влиянием повторяющихся нагревов и охлаждений.

При делении атомов урана образуются и , нерастворимые в уране, что приводит к распуханию металла (весьма нежелательному для ядерного горючего). Даже при комнатной т-ре уран окисляется в сухом воздухе с образованием тонкой окисной пленки, при нагреве до т-ры 200° С образуется окалина двуокиси U02, при т-ре 200-400° С - U308, при более высокой т-ре -U03 (точнее - твердые растворы на основе этих окислов). Скорость окисления мала при т-ре 50° С и очень велика при т-ре 300° С. С азотом уран медленно взаимодействует ниже т-ры 400° С, но достаточно быстро при т-ре 750-800° С. Взаимодействие с водородом протекает уже при комнатной т-ре с образованием гидрида UH3.

В воде при т-ре до 70° С на уране образуется пленка двуокиси, оказывающая защитное действие; при т-ре 100° С взаимодействие существенно ускоряется. Для получения У. его руды обогащают мокрым хим. способом, выщелачивая серной к-той в присутствии окислителя - двуокиси марганца. Из сернокислого раствора урана экстрагируют органическими растворителями или выделяют фенольными смолами. Полученный концентрат растворяют в азотной к-те. Образующийся при этом нитрат уранила U02 (N03)2 извлекают, напр., бутилфосфатом и после освобождения от последнего разлагают соединения У. при т-ре 500-700° С. Полученные U308 и U03 высокой чистоты восстанавливают водородом при т-ре 600-800° С до двуокиси U02.

Металлический уран получают металлотермическим восстановлением (кальцием или магнием) двуокиси UО2 либо тетрафторида урана UF4, предварительно получаемого из двуокиси действием безводного фтористого водорода при т-ре 500° С. Последний метод более распространен, позволяет получать слитки высокой чистоты (0,0045% Fe, 0,001% Si, 0,003% С) и массой более тонны. Металлический уран получают также электролизом в соляных ваннах, содержащих UF4, при т-ре 800- 1200° С. Черновой уран обычно подвергают рафинирующей плавке (т-ра 1450-1600° С) в графитовых тиглях, в высокочастотных вакуумных печах с разливкой в графитовые изложницы.

Малые опытные образцы деформируют ковкой в альфа-состоянии, ее же применяют, наряду с прессованием в альфа- или гамма-состоянии, для деформирования крупных слитков. Холодная прокатка повышает прочностные характеристики урана,твердость при обжатии на 40%, увеличивает HV от 235 до 325. Снятие наклепа наступает в основном при т-ре 350-450° С в металле технической чистоты и сопровождается в этих условиях рекристаллизацией; вторичная, собирательная рекристаллизация развивается при т-ре 600-650° С. Охлаждение урана в воде или масле из бета- или гамма-состояния не подавляет образования альфа-фазы, но измельчает зерно альфа-урана, особенно при наличии примесей. Металлический У.,


(по Полингу) 1.38 U←U 4+ -1.38В
U←U 3+ -1.66В
U←U 2+ -0.1В 6, 5, 4, 3 Термодинамические свойства 19.05 / ³ 0.115 /( ·) 27.5 /( ·) 1405.5 12.6 / 4018 417 / 12.5 ³/ Кристаллическая решётка орторомбическая 2.850 Отношение c/a n/a n/a

История

Ещё в древнейшие времена (I-й век до нашей эры) природная урана использовалась для изготовления жёлтой глазури для .

Уран был открыт в 1789 немецким химиком Мартином Генрихом Клапротом (Klaproth) при исследовании минерала («урановая смолка»). Назван им в честь , открытой в 1781. В металлическом состоянии уран получен в 1841 французским химиком Эженом Пелиго при восстановлении UCl 4 металлическим калием. урана обнаружил в 1896 француз . Первоначально урану приписывали 116, но в 1871 пришел к выводу, что ее надо удвоить. После открытия элементов с атомными номерами от 90 до 103 американский химик Г.Сиборг пришел к выводу, что эти элементы () правильнее располагать в периодической системе в одной клетке с элементом № 89 . Такое расположение связано с тем, что у актиноидов происходит достройка 5f-электронного подуровня.

Нахождение в природе

Уран - характерный элемент для гранитного слоя и осадочной оболочки земной коры. Содержание в земной коре 2,5 10 -4 % по массе. В морской воде концентрация урана менее 10 -9 г/л, всего в морской воде содержится от 10 9 до 10 10 тонн урана. В свободном виде уран в земной коре не встречается. Известно около 100 минералов урана, важнейшие из них U 3 O 8 , уранинит (U,Th)O 2 , урановая смоляная руда (содержит оксиды урана переменного состава) и тюямунит Ca[(UO 2) 2 (VO 4) 2 ] 8H 2 O.

Изотопы

Природный Уран состоит из смеси трёх изотопов: 238 U - 99,2739%, период полураспада T 1 / 2 = 4,51Ї10 9 лет, 235 U - 0,7024% (T 1 / 2 = 7,13Ї10 8 лет) и 234 U - 0,0057% (T 1 / 2 = 2,48Ї10 5 лет).

Известно 11 искусственных радиоактивных изотопов с массовыми числами от 227 до 240.

Наиболее долгоживущий - 233 U (T 1 / 2 = 1,62Ї10 5 лет) получается при облучении тория нейтронами.

Изотопы урана 238 U и 235 U являются родоначальниками двух радиоактивных рядов.

Получение

Самая первая стадия уранового производства - концентрирование. Породу дробят и смешивают с водой. Тяжелые компоненты взвеси осаждаются быстрее. Если порода содержит первичные минералы урана, то они осаждаются быстро: это тяжелые минералы. Вторичные минералы элемента № 92 легче, в этом случае раньше оседает тяжелая пустая порода. (Впрочем, далеко не всегда она действительно пустая; в ней могут быть многие полезные элементы, в том числе и уран).

Следующая стадия - выщелачивание концентратов, перевод элемента № 92 в раствор. Применяют кислотное и щелочное выщелачивание. Первое - дешевле, поскольку для извлечения урана используют . Но если в исходном сырье, как, например, в урановой смолке , уран находится в четырехвалентном состоянии, то этот способ неприменим: четырехвалентный уран в серной кислоте практически не растворяется. И либо нужно прибегнуть к щелочному выщелачиванию, либо предварительно окислять уран до шестивалентного состояния.

Не применяют кислотное выщелачивание и в тех случаях, если урановый концентрат содержит или . Слишком много кислоты приходится тратить на их растворение, и в этих случаях лучше воспользоваться ( ).

Проблему выщелачивания урана из решает кислородная продувка. В нагретую до 150 °C смесь урановой руды с минералами подают поток . При этом из сернистых минералов образуется , которая и вымывает уран.

На следующем этапе из полученного раствора нужно избирательно выделить уран. Современные методы - и - позволяют решить эту проблему.

Раствор содержит не только уран, но и другие . Некоторые из них в определенных условиях ведут себя так же, как уран: экстрагируются теми же растворителями, оседают на тех же ионообменных смолах, выпадают в осадок при тех же условиях. Поэтому для селективного выделения урана приходится использовать многие окислительно-восстановительные реакции, чтобы на каждой стадии избавляться от того или иного нежелательного попутчика. На современных ионообменных смолах уран выделяется весьма селективно.

Методы ионного обмена и экстракции хороши еще и тем, что позволяют достаточно полно извлекать уран из бедных растворов, в литре которых лишь десятые доли грамма элемента № 92.

После этих операций уран переводят в твердое состояние - в один из оксидов или в тетрафторид UF 4 . Но этот уран еще надо очистить от примесей с большим сечением захвата тепловых нейтронов - , . Их содержание в конечном продукте не должно превышать стотысячных и миллионных долей процента. Вот и приходится уже полученный технически чистый продукт еще раз растворять - на этот раз в . Уранилнитрат UO 2 (NO 3) 2 при экстракции трибутил-фосфатом и некоторыми другими веществами дополнительно очищается до нужных кондиций. Затем это вещество кристаллизуют (или осаждают пероксид UO 4 ·2H 2 O) и начинают осторожно прокаливать. В результате этой операции образуется трехокись урана UO 3 , которую восстанавливают до UO 2 .

Это вещество - предпоследнее на пути от руды к металлу. При температуре от 430 до 600 °C оно реагирует с сухим фтористым водородом и превращается в тетрафторид UF 4 . Именно из этого соединения обычно получают металлический уран. Получают с помощью или обычным .

Физические свойства

Уран очень тяжелый, серебристо-белый глянцеватый металл. В чистом виде он немного мягче стали, ковкий, гибкий, обладает небольшими парамагнитными свойствами. Уран имеет три аллотропные формы: альфа (призматическая, стабильна до 667.7 °C), бета (четырехугольная, стабильна от 667.7 до 774.8 °C), гамма (с объемно центрированной кубической структурой, существующей от 774.8 °C до точки плавления).

Химические свойства

Химическая активность металлического урана высока. На воздухе он покрывается радужной пленкой . Порошкообразный уран , он самовозгорается при температуре 150-175 °C. При сгорании урана и термическом разложении многих его соединений на воздухе образуется оксид урана U 3 O 8 . Если этот оксид нагревать в атмосфере при температуре выше 500 °C, образуется UO 2 . При сплавлении оксидов урана с оксидами других металлов образуются уранаты: К 2 UO 4 (уранат калия), СаUO 4 (уранат кальция), Na 2 U 2 O 7 (диуранат натрия).

Применение

Ядерное топливо

Наибольшее применение имеет урана 235 U, в котором возможна самоподдерживающаяся . Поэтому этот изотоп используется как топливо в , а также в (критическая масса около 48 кг). Выделение изотопа U 235 из природного урана - сложная технологическая проблема, (см. ). Изотоп U 238 способен делиться под влиянием бомбардировки высокоэнергетическими нейтронами, эту его особенность используют для увеличения мощности (используются нейтроны, порожденные термоядерной реакцией). В результате захвата нейтрона с последующим β-распадом 238 U может превращаться в 239 , который затем используется как ядерное топливо.

Уран-233 искуственно получаемый в реакторах (посредством облучения нейтронами и превращающегося в и затем в уран-233) является ядерным топливом для атомных электростанций и производства атомных бомб (критическая масса около 16 кг). Уран-233 так же наиболее перспективное топливо для газофазных ядерных ракетных двигателей.

Другие сферы применения

  • Небольшая добавка урана придаёт красивый зеленовато-жёлтый оттенок стеклу.
  • Карбид урана-235 в сплаве с карбидом ниобия и карбидом циркония применяется в качестве топлива для ядерных реактивных двигателей (рабочее тело - водород+гексан).
  • Сплавы железа и обедненного урана (уран-238) применяются как мощные магнитострикционные материалы.
  • В начале ХХ века уранилнитрат широко применялся в качестве вирирующего агента для получения тонированных фотографических отпечатков.

Обеднённый уран

После извлечения U-235 из природного урана, оставшийся материал носит название «обедненный уран», так как он обеднен 235-ым изотопом. По некоторым данным в США хранится около 560 000 тонн обедненного гексафторида урана (UF 6). Обедненный уран в два раза менее радиоактивен, чем природный уран, в основном за счет удаления из него U-234. Из-за того, что основное использование урана - производство энергии, обедненный уран бесполезный продукт с низкой экономическое ценностью.

В основном его использование связано с большой плотностью урана и относительно низкой его стоимостью: использование его для радиационной защиты (как это не странно) и как балластная масса в аэрокосмических применениях, таких как рулевые поверхности летательных аппаратов. В каждом самолете содержится 1500 кг обедненного урана для этих целей. Еще этот материал применяется в высокоскоростных роторах гироскопов, больших маховиках, как балласт в космических спускаемых аппаратах и гоночных яхтах, при бурении нефтяных скважин.

Сердечники бронебойных снарядов

Самое известное применение урана - в качестве сердечников для американских . При сплавлении с 2% или 0.75% и термической обработке (быстрая закалка разогретого до 850 °С металла в воде или масле, дальнейшее выдерживание при 450 °С 5 часов) металлический уран становится тверже и прочнее (прочность на разрыв больше 1600 МПа, при том, что у чистого урана он равен 450 МПа). В сочетании с большой плотностью, это делает закаленную урановую болванку чрезвычайно эффективным средством для пробивания брони, аналогичным по эффективности более дорогому . Процесс разрушения брони сопровождается измельчением в пыль урановой болванки и воспламенением ее на воздухе с другой стороны брони. Около 300 тонн обедненного урана остались на поле боя во время операции «Буря в Пустыне» (по большей части это остатки снарядов 30-мм пушки GAU-8 штурмовых самолетов A-10, каждый снаряд содержит 272 г уранового сплава).

Такие снаряды были использованы войсками НАТО в боевых действиях на территории Югославии. После их применения обсуждалась экологическая проблема радиационного загрязнения территории страны.

Обедненный уран используется в современной танковой броне, например, танка .

Физиологическое действие

В микроколичествах (10 -5 -10 -8 %) обнаруживается в тканях растений, животных и человека. В наибольшей степени накапливается некоторыми грибами и водорослями. Соединения урана всасываются в желудочно-кишечном тракте (около 1 %), в легких - 50 %. Основные депо в организме: селезенка, и бронхо-легочные . Содержание в органах и тканях человека и животных не превышает 10 -7 г.

Уран и его соединения токсичны . Особенно опасны аэрозоли урана и его соединений. Для аэрозолей растворимых в воде соединений урана ПДК в воздухе 0,015 мг/м 3 , для нерастворимых форм урана 0,075 мг/м 3 . При попадании в организм уран действует на все органы, являясь общеклеточным ядом. Молекулярный механизм действия урана связан с его способностью подавлять активность . В первую очередь поражаются (появляются белок и сахар в моче, ). При хронической возможны нарушения кроветворения и нервной системы.

Добыча урана в мире

Согласно «Красной книге по урану», выпущенной , в 2005 добыто 41250 тонн урана (в 2003 - 35492 тонны). Согласно данным ОЭСР, в мире функционирует 440 коммерческого назначения, которые потребляют в год 67 тыс. тонн урана. Это означает, что его производство обеспечивает лишь 60 % объема его потребления (остальное извлекается из старых ядерных боеголовок).

Добыча по странам в тоннах по содержанию U на 2005-2006 гг.

Добыча в России

Остальные 7 % получают методом подземного выщелачивания ЗАО «Далур» () и ОАО «Хиагда» ().

Полученные руды и урановый концентрат перерабатываются на Чепецком механическом заводе.

См. также

Ссылки